Patents by Inventor Randor R. Radakovits

Randor R. Radakovits has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240052001
    Abstract: Disclosed herein are mutant photosynthetic microorgnaisms having an attenuated SGI1 gene. The mutants have reduced chlorophyll and increased productivity with respect to wild type cells. Also disclosed are methods of using such mutants for producing biomass or bioproducts, and methods of screening for such mutants.
    Type: Application
    Filed: September 27, 2023
    Publication date: February 15, 2024
    Inventors: Eric R. Moellering, Nicholas Bauman, Randor R. Radakovits, Roberto Spreafico, Fedor Kuzminov, Imad Ajjawi, Saheed Imam, Andrew Schultz, Kathleen Kwok, Moena Aqui, Jennifer Nominati, John Verruto, Shaun Bailey
  • Patent number: 11787843
    Abstract: Disclosed herein are mutant photosynthetic microorganisms having an attenuated SGI1 gene. The mutants have reduced chlorophyll and increased productivity with respect to wild type cells. Also disclosed are methods of using such mutants for producing biomass or bioproducts, and methods of screening for such mutants.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: October 17, 2023
    Assignee: Viridos, Inc.
    Inventors: Eric R. Moellering, Nicholas Bauman, Randor R. Radakovits, Roberto Spreafico, Fedor Kuzminov, Imad Ajjawi, Saheed Imam, Andrew Schultz, Kathleen Kwok, Moena Aqui, Jennifer Nominati, John Verruto, Shaun Bailey
  • Patent number: 11193132
    Abstract: Mutant photosynthetic organisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutant strains have mutated or attenuated: chloroplastic SRP54 gene and SGI1 gene; chloroplastic SRP54 gene and SGI2 gene; chloroplastic SRP54 gene, SGI1, and SGI2 genes are disclosed. The mutant photosynthetic organisms exhibit increased productivity with respect to wild-type strains. Also provided are mutant photosynthetic organisms having mutated or attenuated cytosolic SRP54 genes. Provided herein are methods of producing biomass and other products such as lipids using strains having mutations in an SRP54 gene, SGI1, SGI2 genes, a combination of SGI1/SRP54, and a combination of SGI2 and SRP54 genes. Also included are constructs and methods for attenuating or disrupting SRP54, SGI1, and SGI2 genes.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: December 7, 2021
    Assignee: Synthetic Genomics, Inc.
    Inventors: Imad Ajjawi, Fedor I. Kuzminov, Randor R. Radakovits, John H. Verruto, Sarah Potts, Roberto Spreafico, William F. Lambert, Jessica Greiner
  • Publication number: 20210188924
    Abstract: Disclosed herein are mutant photosynthetic microorganisms having an attenuated SGI1 gene. The mutants have reduced chlorophyll and increased productivity with respect to wild type cells. Also disclosed are methods of using such mutants for producing biomass or bioproducts, and methods of screening for such mutants.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 24, 2021
    Inventors: Eric R. Moellering, Nicholas Bauman, Randor R. Radakovits, Roberto Spreafico, Fedor Kuzminov, Imad Ajjawi, Saheed Imam, Andrew Schultz, Kathleen Kwok, Moena Aqui, Jennifer Nominati, John Verruto, Shaun Bailey
  • Patent number: 10968259
    Abstract: Disclosed herein are mutant photosynthetic microorgnaisms having an attenuated SGI1 gene. The mutants have reduced chlorophyll and increased productivity with respect to wild type cells. Also disclosed are methods of using such mutants for producing biomass or bioproducts, and methods of screening for such mutants.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: April 6, 2021
    Assignee: Synthetic Genomics, Inc.
    Inventors: Eric R. Moellering, Nicholas Bauman, Randor R. Radakovits, Roberto Spreafico, Fedor Kuzminov, Imad Ajjawi, Saheed Imam, Andrew Schultz, Kathleen Kwok, Moena Aqui, Jennifer Nominati, John Verruto, Shaun Bailey
  • Publication number: 20200385668
    Abstract: Improved labyrinthulomycetes strains that produce microbial oils having increased docosahexaenoic acid (DHA) content are disclosed. The strains have increased productivity with respect to a wild type strain. Also provided are microbial oil compositions having increased DHA content. Methods of improving strains for the production of lipid, such as DHA, are also included.
    Type: Application
    Filed: August 12, 2020
    Publication date: December 10, 2020
    Inventors: Randor R. Radakovits, Michele M. Champagne
  • Publication number: 20190203221
    Abstract: Mutant photosynthetic organisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutant strains have mutated or attenuated: chloroplastic SRP54 gene and SGI1 gene; chloroplastic SRP54 gene and SGI2 gene; chloroplastic SRP54 gene, SGI1, and SGI2 genes are disclosed. The mutant photosynthetic organisms exhibit increased productivity with respect to wild-type strains. Also provided are mutant photosynthetic organisms having mutated or attenuated cytosolic SRP54 genes. Provided herein are methods of producing biomass and other products such as lipids using strains having mutations in an SRP54 gene, SGI1, SGI2 genes, a combination of SGI1/SRP54, and a combination of SGI2 and SRP54 genes. Also included are constructs and methods for attenuating or disrupting SRP54, SGI1, and SGI2 genes.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 4, 2019
    Inventors: Imad Ajjawi, Fedor I. Kuzminov, Randor R. Radakovits, John H. Verruto, Sarah Tacke, Roberto Spreafico, William F. Lambert, Jessica Nichole Greiner
  • Publication number: 20180186842
    Abstract: Disclosed herein are mutant photosynthetic microorgnaisms having an attenuated SGI1 gene. The mutants have reduced chlorophyll and increased productivity with respect to wild type cells. Also disclosed are methods of using such mutants for producing biomass or bioproducts, and methods of screening for such mutants.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 5, 2018
    Inventors: Eric R. Moellering, Nicholas Bauman, Randor R. Radakovits, Roberto Spreafico, Fedor Kuzminov, Imad Ajjawi, Saheed Imam, Andrew Schultz, Kathleen Kwok, Moena Aqui, Jennifer Nominati, John Verruto, Shaun Bailey
  • Publication number: 20160264985
    Abstract: Recombinant microorganisms engineered for the production of polyunsaturated fatty acids (PUFAs) are provided. Also provided are biomass, microbial oils, and food products and ingredients produced by or comprising the microorganisms of the invention.
    Type: Application
    Filed: March 11, 2016
    Publication date: September 15, 2016
    Inventors: Nicky C. Caiazza, Elizabeth A. Felnagle, Jun Urano, Maung N. Win, Randor R. Radakovits
  • Publication number: 20160177255
    Abstract: Improved labyrinthulomycetes strains that produce microbial oils having increased docosahexaenoic acid (DHA) content are disclosed. The strains have increased productivity with respect to a wild type strain. Also provided are microbial oil compositions having increased DHA content. Methods of improving strains for the production of lipid, such as DHA, are also included.
    Type: Application
    Filed: May 22, 2015
    Publication date: June 23, 2016
    Inventors: Randor R. Radakovits, Michele M. Champagne