Patents by Inventor Randy W. Simon

Randy W. Simon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5554585
    Abstract: A lanthanum aluminate (LaAlO.sub.3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO.sub.3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also be used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
    Type: Grant
    Filed: November 4, 1994
    Date of Patent: September 10, 1996
    Assignee: TRW Inc.
    Inventors: Randy W. Simon, Christine E. Platt, Alfred E. Lee, Gregory S. Lee
  • Patent number: 5523283
    Abstract: A lanthanum aluminate ( LaAlO.sub.3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO.sub.3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: June 4, 1996
    Assignee: TRW Inc.
    Inventors: Randy W. Simon, Christine E. Platt, Alfred E. Lee, Gregory S. Lee
  • Patent number: 5523282
    Abstract: A lanthanum aluminate (LaAlO.sub.3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO.sub.3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
    Type: Grant
    Filed: August 18, 1988
    Date of Patent: June 4, 1996
    Assignee: TRW Inc.
    Inventors: Randy W. Simon, Christine E. Platt, Alfred E. Lee, Gregory S. Lee
  • Patent number: 5449659
    Abstract: A method for producing multilayer structures comprised of materials with incompatible processing parameters is disclosed. A bonding layer of arbitrary dielectric constant is applied to each of two substructures. Each substructure is composed of a substrate and at least one epitaxial crystalline layer. Examples of particular bonding materials used are polyimide, fluorocarbon polymers, other organic materials, and glass. The bonding material may be applied like photoresist, or sputtered, or applied in any appropriate manner consistent with the processing constraints of the crystalline materials. Structures formable in this way include superconductor-amorphous dielectric-superconductor and ferroelectric-insulator-semiconductor trilayers, as well as microwave resonators and multichip modules.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: September 12, 1995
    Assignee: Conductus, Inc.
    Inventors: Stephen M. Garrison, Randy W. Simon
  • Patent number: 5331162
    Abstract: A superconducting infrared photodetector employing SQUID (Superconducting Quantum Interference Device) measurement of fluxon flow in thin superconducting granular films to provide sensitive, low-noise detection of infrared radiation. The superconducting infrared photodetector includes a plurality of superconducting detector elements connected in parallel or series, means for supplying a bias current to the detector elements, and a digital or analog SQUID readout circuit. Each detector element includes a thin granular film of superconducting material which forms a randomly connected array of weakly coupled superconductors. The weakly coupled superconductors promote the formation of oppositely-polarized fluxons, which are driven to opposite sides of the film when subjected to the bias current. Incident radiation causes an increase in this fluxon flow, generating a voltage change.
    Type: Grant
    Filed: November 22, 1991
    Date of Patent: July 19, 1994
    Assignee: TRW Inc.
    Inventors: Arnold H. Silver, Michael Leung, Gregory S. Lee, Randy W. Simon, Robert D. Sandell
  • Patent number: 5306927
    Abstract: A high current amplifier, three terminal device, comprising a Josephson tunnel junction and a Schottky diode is configured so that the Josephson junction and Schottky diode share a common base electrode which is made very thin. Electrons which cross the Schottky barrier are supplied to the Josephson junction to obtain the amplified output current.
    Type: Grant
    Filed: August 15, 1991
    Date of Patent: April 26, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Bruce J. Dalrymple, Arnold H. Silver, Randy W. Simon
  • Patent number: 5280013
    Abstract: A superconducting electronic circuit device, useful when impedance matching is desired, especially suited to microwave frequencies, consisting of a thin dielectric layer with superconducting layers on both sides. A superconductor such as Yttrium Barium Copper Oxide (YBCO) is formed on a first substrate such as lanthanum aluminate. A protective layer like gold is deposited on the YBCO and a second carrier substrate is bonded to the protected YBCO. The first substrate is then thinned into a thin dielectric film and a second layer of superconductor is epitaxially grown thereon to create the desired circuits.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: January 18, 1994
    Assignee: Conductus, Inc.
    Inventors: Nathan Newman, Aharon Kapitulnik, Brady F. Cole, Randy W. Simon