Patents by Inventor Ranga Rao Arnepalli

Ranga Rao Arnepalli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11598000
    Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Ranga Rao Arnepalli, Colin Costano Neikirk, Yuriy Melnik, Suresh Chand Seth, Pravin K. Narwankar, Sukti Chatterjee, Lance A. Scudder
  • Publication number: 20230052048
    Abstract: Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
    Type: Application
    Filed: September 16, 2022
    Publication date: February 16, 2023
    Inventors: Ashavani KUMAR, Ashwin CHOCKALINGAM, Sivapackia GANAPATHIAPPAN, Rajeev BAJAJ, Boyi FU, Daniel REDFIELD, Nag B. PATIBANDLA, Mario Dagio CORNEJO, Amritanshu SINHA, Yan ZHAO, Ranga Rao ARNEPALLI, Fred C. REDEKER
  • Patent number: 11471999
    Abstract: Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: October 18, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ashavani Kumar, Ashwin Chockalingam, Sivapackia Ganapathiappan, Rajeev Bajaj, Boyi Fu, Daniel Redfield, Nag B. Patibandla, Mario Dagio Cornejo, Amritanshu Sinha, Yan Zhao, Ranga Rao Arnepalli, Fred C. Redeker
  • Patent number: 10515927
    Abstract: A fan-out process using chemical mechanical planarization (CMP) reduces the step-height between a semiconductor die and the surrounding overmolding of a reconstituted wafer. The reconstituted wafer is formed by overmolding a back side of at least one die that is placed with an active side facing down. The reconstituted wafer is then oriented to expose the die and the active side. A polymer layer is then formed over the reconstituted wafer. A CMP process then removes a portion of the polymer layer until a certain thickness above the die surface is obtained, reducing the step-height between the polymer layer on top of the die surface and the polymer layer on the adjacent mold compound surface. The CMP process can also be performed after a subsequent redistribution layer is formed on the reconstituted wafer.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: December 24, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prayudi Lianto, Guan Huei See, Arvind Sundarrajan, Ranga Rao Arnepalli, Prerna Goradia
  • Patent number: 10326067
    Abstract: Single source precursors, methods to synthesize single source precursors and methods to deposit nanowire based thin films using single source precursors for high efficiency thermoelectric devices are provided herein. In some embodiments, a method of forming a single source precursor includes mixing a first compound with one of SbX3, SbX5, Sb2(SO4)3 or with one of BiX3, Bi(NO3)3, Bi(OTf)3, Bi(PO4), Bi(OAc)3, wherein the first compound is one of a lithium selenolate, a lithium tellurolate, a monoselenide, or a monotelluride.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: June 18, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ranga Rao Arnepalli, Tapash Chakraborty, Robert Jan Visser
  • Patent number: 10319601
    Abstract: A slurry for chemical mechanical planarization includes water, 1-3 wt. % of abrasive particles having an average diameter of at least 10 nm and less than 100 nm and an outer surface of ceria, and ½-3 wt. % of at least one amine.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Ranga Rao Arnepalli, Prerna Goradia, Prayudi Lianto, Jie Zeng, Arvind Sundarrajan, Robert Jan Visser, Guan Huei See
  • Patent number: 10280507
    Abstract: Systems and methods for forming films on the surface of a substrate are described. The systems possess aerosol generators which form droplets from a liquid solution made from a solvent and a deposition precursor. A carrier gas may be flowed through the liquid solution and push the droplets toward a substrate placed in a substrate processing region. The droplets pass into the substrate processing region and chemically react with the substrate to form films. The temperature of the substrate may be maintained below the boiling temperature of the solvent during film formation. The solvent imparts a flowability to the forming film and enable the depositing film to flow along the surface of a patterned substrate during formation prior to solidifying. The flowable film results in bottom-up gapfill inside narrow high-aspect ratio gaps in the patterned substrate.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: May 7, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ranga Rao Arnepalli, Darshan Thakare, Abhijit Basu Mallick, Pramit Manna, Robert Jan Visser, Prerna Sonthalia Goradia, Nilesh Chimanrao Bagul
  • Patent number: 10273577
    Abstract: Systems and methods for processing films on the surface of a substrate are described. The systems possess aerosol generators which form droplets from a condensed matter (liquid or solid) of one or more precursors. A carrier gas is flowed through the condensed matter and push the droplets toward a substrate placed in a substrate processing region. An inline pump connected with the aerosol generator can also be used to push the droplets towards the substrate. A direct current (DC) electric field is applied between two conducting plates configured to pass the droplets in-between. The size of the droplets is desirably reduced by application of the DC electric field. After passing through the DC electric field, the droplets pass into the substrate processing region and chemically react with the substrate to deposit or etch films.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: April 30, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ranga Rao Arnepalli, Nilesh Chimanrao Bagul, Prerna Sonthalia Goradia, Robert Jan Visser
  • Publication number: 20190119810
    Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.
    Type: Application
    Filed: September 21, 2018
    Publication date: April 25, 2019
    Inventors: Ranga Rao ARNEPALLI, Colin Costano NEIKIRK, Yuriy MELNIK, Suresh Chand SETH, Pravin K. NARWANKAR, Sukti CHATTERJEE, Lance A. SCUDDER
  • Publication number: 20190030678
    Abstract: Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 31, 2019
    Inventors: Ashavani KUMAR, Ashwin CHOCKALINGAM, Sivapackia GANAPATHIAPPAN, Rajeev BAJAJ, Boyi FU, Daniel REDFIELD, Nag B. PATIBANDLA, Mario Dagio CORNEJO, Amritanshu SINHA, Yan ZHAO, Ranga Rao ARNEPALLI, Fred C. REDEKER
  • Patent number: 10163629
    Abstract: Systems and methods for processing films on the surface of a substrate are described. The systems possess aerosol generators which form droplets from a condensed matter (liquid or solid) of one or more precursors. A carrier gas is flowed through the condensed matter and push the droplets toward a substrate placed in a substrate processing region. An inline pump connected with the aerosol generator can also be used to push the droplets towards the substrate. A direct current (DC) electric field is applied between two conducting plates configured to pass the droplets in-between. The size of the droplets is desirably reduced by application of the DC electric field. After passing through the DC electric field, the droplets pass into the substrate processing region and chemically react with the substrate to deposit or etch films.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: December 25, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ranga Rao Arnepalli, Nilesh Chimanrao Bagul, Prerna Sonthalia Goradia, Robert Jan Visser
  • Publication number: 20180363133
    Abstract: Methods for filling a substrate feature with a seamless silicon nitride gapfill through a radical based hot wire chemical vapor deposition process are described. Also described is an apparatus for performing the radical based hot wire chemical vapor deposition of the silicon nitride gapfill.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 20, 2018
    Inventors: Ranga Rao Arnepalli, Robert Jan Visser, Pramit Manna, Abhijit Basu Mallick, Prerna Goradia
  • Publication number: 20180347039
    Abstract: Embodiments of the disclosure relate to methods of depositing industrial coating on a substrate or process parts. More particularly, embodiments of the disclosure are directed to methods of depositing metals, metal oxides, metal nitrides and/or metal fluorides on surfaces comprised of metals, ceramics, or organic materials. In some embodiments, a metal-containing precursor can be aerosolized with an organic solvent and exposed to a substrate processing chamber where the organic solvent can be evaporated to adsorb the metal-containing precursor. The adsorbed precursor can be decomposed or reacted to form the metal-containing film.
    Type: Application
    Filed: May 10, 2018
    Publication date: December 6, 2018
    Inventors: Ranga Rao Arnepalli, Robert Jan Visser, Geetika Bajaj, Prerna Goradia
  • Publication number: 20180350604
    Abstract: Embodiments of the disclosure relate to methods of selectively depositing or etching conductive materials from a substrate comprising conductive materials and nonconductive materials. More particularly, embodiments of the disclosure are directed to methods of using electrical bias and aerosol assisted chemical vapor deposition to deposit metal on conductive metal pillars. Additional embodiments of the disclosure relate to methods of using electrical bias and aerosol assisted chemical vapor deposition to etch metal from conductive metal pillars.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 6, 2018
    Inventors: Robert Jan Visser, Prerna Goradia, Tapash Chakraborty, Ranga Rao Arnepalli, Darshan Thakare, Geetika Bajaj
  • Publication number: 20180330929
    Abstract: Embodiments of the disclosure generally relate to methods for removal of accumulated process byproducts from components of a semiconductor processing chamber. In one embodiment of the disclosure, a method for cleaning components within a processing chamber is disclosed. The method includes heating the components within the processing chamber to a temperature between about 150-300 degrees Celsius, exposing the components of the chamber to one or more precursor gases and removing a product of a reaction between a fluorine-based compound disposed on the components and the one or more precursor gases. The one or more precursor gases include trimethyl aluminum or tin acetylacetonate.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Ranga Rao ARNEPALLI, Bipin THAKUR, Kevin A. PAPKE, Yogita PAREEK
  • Publication number: 20180308822
    Abstract: A fan-out process using chemical mechanical planarization (CMP) reduces the step-height between a semiconductor die and the surrounding overmolding of a reconstituted wafer. The reconstituted wafer is formed by overmolding a back side of at least one die that is placed with an active side facing down. The reconstituted wafer is then oriented to expose the die and the active side. A polymer layer is then formed over the reconstituted wafer. A CMP process then removes a portion of the polymer layer until a certain thickness above the die surface is obtained, reducing the step-height between the polymer layer on top of the die surface and the polymer layer on the adjacent mold compound surface. The CMP process can also be performed after a subsequent redistribution layer is formed on the reconstituted wafer.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 25, 2018
    Inventors: Prayudi Lianto, Guan Huei See, Arvind Sundarrajan, Ranga Rao Arnepalli, Prerna Goradia
  • Publication number: 20180298492
    Abstract: Systems and methods for forming films on the surface of a substrate are described. The systems possess aerosol generators which form droplets from a liquid solution made from a solvent and a deposition precursor. A carrier gas may be flowed through the liquid solution and push the droplets toward a substrate placed in a substrate processing region. The droplets pass into the substrate processing region and chemically react with the substrate to form films. The temperature of the substrate may be maintained below the boiling temperature of the solvent during film formation. The solvent imparts a flowability to the forming film and enable the depositing film to flow along the surface of a patterned substrate during formation prior to solidifying. The flowable film results in bottom-up gapfill inside narrow high-aspect ratio gaps in the patterned substrate.
    Type: Application
    Filed: May 14, 2018
    Publication date: October 18, 2018
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Ranga Rao Arnepalli, Darshan Thakare, Abhijit Basu Mallick, Pramit Manna, Robert Jan Visser, Prerna Sonthalia Goradia, Nilesh Chimanrao Bagul
  • Publication number: 20180277384
    Abstract: A slurry for chemical mechanical planarization includes water, 1-3 wt. % of abrasive particles having an average diameter of at least 10 nm and less than 100 nm and an outer surface of ceria, and ½-3 wt. % of at least one amine.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 27, 2018
    Inventors: Ranga Rao Arnepalli, Prerna Goradia, Prayudi Lianto, Jie Zeng, Arvind Sundarrajan, Robert Jan Visser, Guan Huei See
  • Publication number: 20180236633
    Abstract: A method of polishing includes bringing a metal layer of a substrate into contact with a polishing pad, generating relative motion between the substrate and the polishing pad, and while the metal layer is in contact with the polishing pad and the substrate is moving relative to the polishing pad, alternating between supplying a first polishing liquid and a second polishing liquid to an interface between the metal layer. The first polishing liquid is abrasive-free and includes an oxidizer, and the second polishing liquid includes abrasive particles and a complexing compound to complex with ions of the metal of the metal layer.
    Type: Application
    Filed: April 3, 2017
    Publication date: August 23, 2018
    Inventors: Ranga Rao Arnepalli, Sudhanshu Singh, Darshan Thakare, Prerna Goradia, Robert Jan Visser
  • Publication number: 20180226278
    Abstract: Systems and methods of etching a semiconductor substrate may include flowing an oxygen-containing precursor into a substrate processing region of a semiconductor processing chamber. The substrate processing region may house the semiconductor substrate, and the semiconductor substrate may include an exposed metal-containing material. The methods may include flowing a nitrogen-containing precursor into the substrate processing region. The methods may further include removing an amount of the metal-containing material.
    Type: Application
    Filed: February 6, 2017
    Publication date: August 9, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Ranga Rao Arnepalli, Prerna Sonthalia Goradia, Robert Jan Visser, Nitin Ingle, Mikhail Korolik, Jayeeta Biswas, Saurabh Lodha