Patents by Inventor Ranjan Ray

Ranjan Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959393
    Abstract: An airfoil assembly for a turbine engine comprising an outer band, an inner band radially spaced inwardly from the outer band to define an annular region, and multiple airfoils circumferentially spaced within the annular region. Each corresponding airfoil of the multiple airfoils can project from a surface at a root and can further include an outer wall defining a pressure side and a suction side. A projection can extend upwardly from the surface on the pressure side and a valley can extend into the surface on the suction side to define a contour in the surface.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: April 16, 2024
    Assignees: General Electric Company, GE Avivo S.r.l.
    Inventors: Saurya Ranjan Ray, Francesco Bertini, Lyle Douglas Dailey, Jeffrey D. Clements, Jaikumar Loganathan, Simone Rosa Taddei
  • Publication number: 20230243270
    Abstract: An air turbine starter having a housing, a turbine, a drive shaft, and at least one vane. The housing having an inlet, an outlet and a curvilinear flow path extending between the inlet and the outlet. The at last one vane is located within a portion of the curvilinear flow path, and includes an outer wall extending between a root and a tip in a span-wise direction and between a leading edge and a trailing edge in a chord-wise direction. In one aspect, the vane is arranged to define an acute axial angle that is non-constant in the chord-wise or span-wise direction. In another aspect, the vane is arranged to define an acute tangential angle that is non-constant in the chord-wise or span-wise direction.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Inventors: Milind Chandrakant Dhabade, Vishnu Vardhan Venkata Tatiparthi, Ramana Reddy Kollam, Shiloh Montegomery Meyers, Saurya Ranjan Ray, Subrata Nayak
  • Patent number: 11634992
    Abstract: An air turbine starter comprising a housing defining an inlet, an outlet, and a flow path, a turbine having a rotor with circumferentially spaced blades extending into the flow path, a drive shaft operably coupled to and rotating with the rotor, and at least one vane located within the flow path, upstream of the blades. The at least one blade being defined by an acute axial angle and an acute tangential angle.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: April 25, 2023
    Assignee: Unison Industries, LLC
    Inventors: Milind Chandrakant Dhabade, Vishnu Vardhan Venkata Tatiparthi, Ramana Reddy Kollam, Shiloh Montegomery Meyers, Saurya Ranjan Ray, Subrata Nayak
  • Publication number: 20220243601
    Abstract: An air turbine starter comprising a housing defining an inlet, an outlet, and a flow path, a turbine having a rotor with circumferentially spaced blades extending into the flow path, a drive shaft operably coupled to and rotating with the rotor, and at least one vane located within the flow path, upstream of the blades. The at least one blade being defined by an acute axial angle and an acute tangential angle.
    Type: Application
    Filed: June 15, 2021
    Publication date: August 4, 2022
    Inventors: Milind Chandrakant Dhabade, Vishnu Vardhan Venkata Tatiparthi, Ramana Reddy Kollam, Shiloh Montegomery Meyers, Saurya Ranjan Ray, Subrata Nayak
  • Publication number: 20220243596
    Abstract: An airfoil assembly for a turbine engine comprising an outer band, an inner band radially spaced inwardly from the outer band to define an annular region, and multiple airfoils circumferentially spaced within the annular region. Each corresponding airfoil of the multiple airfoils can project from a surface at a root and can further include an outer wall defining a pressure side and a suction side. A projection can extend upwardly from the surface on the pressure side and a valley can extend into the surface on the suction side to define a contour in the surface.
    Type: Application
    Filed: November 10, 2021
    Publication date: August 4, 2022
    Inventors: Saurya Ranjan Ray, Francesco Bertini, Lyle Douglas Dailey, Jeffrey D. Clements, Jaikumar Loganathan, Simone Rosa Taddei
  • Publication number: 20100063004
    Abstract: This invention relates to a novel topical pharmaceutical composition. In particular, this invention is an overnight topical composition for treating cold sores.
    Type: Application
    Filed: December 3, 2007
    Publication date: March 11, 2010
    Inventors: Ranjan Ray Chaudhuri, Satish Ramchandra Dipali, Phillip E. West
  • Patent number: 6986381
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with a refractory metal such as W or Re or a refractory metal carbide such as TaC or HfC. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with titanium carbide via either chemical deposition or plasma assisted chemical vapor deposition, magnetron sputtering or sputtering. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: January 17, 2006
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Publication number: 20050183797
    Abstract: Disclosed are sputtering targets and methods for making various nickel and cobalt base alloys into sputtering targets by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequent casting of the melt as round, square or rectangular plates in metal molds under vacuum or under low partial pressure of inert gas are provided. The plates are subsequently preheated and deformed between two flat dies.
    Type: Application
    Filed: February 23, 2004
    Publication date: August 25, 2005
    Inventor: Ranjan Ray
  • Publication number: 20050016706
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with a refractory metal such as W or Re or a refractory metal carbide such as TaC or HfC. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with titanium carbide via either chemical deposition or plasma assisted chemical vapor deposition, magnetron sputtering or sputtering. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Application
    Filed: July 23, 2003
    Publication date: January 27, 2005
    Inventors: Ranjan Ray, Donald Scott
  • Patent number: 6799626
    Abstract: Methods for making various metallic alloys such as nickel, cobalt and/or iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent casting of the melt in the graphite molds under vacuum or low partial pressure of inert gas are provided, the molds having been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: October 5, 2004
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6799627
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with titanium carbide. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with titanium carbide via either chemical deposition or plasma assisted chemical vapor deposition, magnetron sputtering or sputtering. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: October 5, 2004
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6776214
    Abstract: Methods for making various titanium base alloys and titanium aluminides into engineering components such as rings, tubes and pipes by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent centrifugal casting of the melt in the graphite molds rotating along its own axis under vacuum or low partial pressure of inert gas are provided, the molds having been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding, the said molds either revolving around its own horizontal or vertical axis or centrifuging around a vertical axis of rotation.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: August 17, 2004
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6755239
    Abstract: Methods for making various titanium base alloys and titanium aluminides into engineering components such as rings, tubes and pipes by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent centrifugal casting of the melt in the graphite molds rotating along its own axis under vacuum or low partial pressure of inert gas are provided, the molds having been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding, the said molds either revolving around its own horizontal or vertical axis or centrifuging around a vertical axis of rotation.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: June 29, 2004
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Publication number: 20040060685
    Abstract: Methods for making various titanium base alloys and titanium aluminides into engineering components such as rings, tubes and pipes by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent centrifugal casting of the melt in the graphite molds rotating along its own axis under vacuum or low partial pressure of inert gas are provided, the molds having been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding, the said molds either revolving around its own horizontal or vertical axis or centrifuging around a vertical axis of rotation.
    Type: Application
    Filed: October 1, 2003
    Publication date: April 1, 2004
    Inventors: Ranjan Ray, Donald W. Scott
  • Publication number: 20040055725
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with titanium carbide. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with titanium carbide via either chemical deposition or plasma assisted chemical vapor deposition, magnetron sputtering or sputtering. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Application
    Filed: May 30, 2003
    Publication date: March 25, 2004
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6705385
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with pyrolytic graphite. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with pyrolytic graphite via a chemical deposition process. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: March 16, 2004
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Publication number: 20040040690
    Abstract: Methods for making various titanium base alloys and titanium aluminides into engineering components such as rings, tubes and pipes by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent centrifugal casting of the melt in the graphite molds rotating along its own axis under vacuum or low partial pressure of inert gas are provided, the molds having been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding, the said molds either revolving around its own horizontal or vertical axis or centrifuging around a vertical axis of rotation.
    Type: Application
    Filed: May 23, 2003
    Publication date: March 4, 2004
    Inventors: Ranjan Ray, Donald W. Scott
  • Publication number: 20040003913
    Abstract: Methods for making various metallic alloys such as nickel, cobalt and/or iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent casting of the melt in the graphite molds under vacuum or low partial pressure of inert gas are provided, the molds having been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding.
    Type: Application
    Filed: May 14, 2002
    Publication date: January 8, 2004
    Inventors: Ranjan Ray, Donald W. Scott
  • Patent number: 6634413
    Abstract: Methods for making various nickel based superalloys into engineering components such as rings, tubes and pipes by melting of the alloys in a vacuum or under a low partial pressure of inert gas and subsequent centrifugal casting of the melt in the graphite molds rotating along its own axis under vacuum or low partial pressure of inert gas are provided. The molds have been fabricated by machining high density, high strength ultrafine grained isotropic graphite, wherein the graphite has been made by isostatic pressing or vibrational molding.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: October 21, 2003
    Assignee: Santoku America, Inc.
    Inventors: Ranjan Ray, Donald W. Scott
  • Publication number: 20030042001
    Abstract: Molds are fabricated having a substrate of high density, high strength ultrafine grained isotropic graphite, and having a mold cavity coated with pyrolytic graphite. The molds may be made by making the substrate (main body) of high density, high strength ultrafine grained isotropic graphite, by, for example, isostatic or vibrational molding, machining the substrate to form the mold cavity, and coating the mold cavity with pyrolytic graphite via a chemical deposition process. The molds may be used to make various metallic alloys such as nickel, cobalt and iron based superalloys, stainless steel alloys, titanium alloys and titanium aluminide alloys into engineering components by melting the alloys in a vacuum or under a low partial pressure of inert gas and subsequently casting the melt in the graphite molds under vacuum or low partial pressure of inert gas.
    Type: Application
    Filed: May 22, 2002
    Publication date: March 6, 2003
    Inventors: Ranjan Ray, Donald W. Scott