Patents by Inventor Ranjit S. Bindra

Ranjit S. Bindra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110293585
    Abstract: Compositions and methods for treating lysosomal storage diseases are disclosed. Lysosomal dysfunction is usually the result of deficiency of a single enzyme necessary for the metabolism of lipids, glycoproteins (sugar containing proteins) or mucopolysaccharides which are fated for breakdown or recycling. The compositions contain triplex-forming molecules which can be used to induce site-specific homologous recombination in mammalian cells when combined with donor DNA molecules, by stimulating cellular DNA synthesis, recombination, and repair mechanisms. The methods are particular useful for correcting point mutations in genes associated with lysosomal storage diseases such as Gaucher's disease, Fabry disease, and Hurler syndrome. Methods for determining the frequency of target gene repair and assessing the restoration of the enzymatic activity of corrected polypeptides are also disclosed. Ex vivo and in vivo methods of gene correction in patients are also provided.
    Type: Application
    Filed: April 21, 2011
    Publication date: December 1, 2011
    Inventors: Jacob del Campo, Ranjit S. Bindra, Peter M. Glazer
  • Publication number: 20110262406
    Abstract: Compositions for targeted mutagenesis of cell surface receptors for HIV and methods of their use are provided herein. The compositions include triplex-forming molecules that displace the polypyrimidine strand of target duplex and form a triple-stranded structure and hybrid duplex in a sequence specific manner with the polypurine strand of the target duplex. The triplex-forming molecules include a mixed-sequence “tail” which increases the stringency of binding to the target duplex, improves the frequency of modification at the target site, and reduces the requirement for a polypurine:polypyrimidine stretch. Methods for using the triplex-forming molecules in combination with one or more donor oligonucleotides for targeted modification of sites within or adjacent to genes that encodes cell surface receptors for human immunodeficiency virus (HIV) are also disclosed. Methods for ex vivo and in vivo prophylaxis and therapy of HIV infection using the disclosed compositions are also provided.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 27, 2011
    Inventors: Jacob del Campo, Erica Beth Schleifman, Ranjit S. Bindra, Peter M. Glazer