Patents by Inventor Raphael Rozenfeld

Raphael Rozenfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11866476
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: January 9, 2024
    Assignee: Xilio Development, Inc.
    Inventors: Margaret Karow, Deborah Moore Lai, Dheeraj Tomar, Parker Johnson, Raphael Rozenfeld, Ronan O'Hagan, Huawei Qiu
  • Patent number: 11827686
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: November 28, 2023
    Assignee: Xilio Development, Inc.
    Inventors: Margaret Karow, Deborah Moore Lai, Dheeraj Singh Tomar, Parker Johnson, Raphael Rozenfeld, Ronan O'Hagan, Huawei Qiu
  • Patent number: 11827685
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: November 28, 2023
    Assignee: Xilio Development, Inc.
    Inventors: Margaret Karow, Deborah Moore Lai, Dheeraj Singh Tomar, Parker Johnson, Raphael Rozenfeld, Ronan O'Hagan, Huawei Qiu
  • Publication number: 20230331799
    Abstract: The present invention relates to masked IL-15 cytokines, comprising an IL-15 cytokine or functional fragment thereof, a masking moiety and a proteolytically cleavable linker. The masking moiety masks the IL-15 cytokine or functional fragment thereof thereby reducing or preventing binding of the IL-cytokine or functional fragment thereof to its cognate receptor, but upon proteolytic cleavage of the cleavable linker at a target site, the IL-15 cytokine or functional fragment thereof becomes activated, which renders it capable or more capable of binding to its cognate receptor.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 19, 2023
    Inventors: Raphael ROZENFELD, Ugur ESKIOCAK, Huawei QIU, Parker JOHNSON, Kurt Allen JENKINS, Magali PEDERZOLI-RIBEIL, Dheeraj Singh TOMAR, Rebekah Kay O'DONNELL
  • Patent number: 11718655
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: August 8, 2023
    Assignee: XILIO DEVELOPMENT, INC.
    Inventors: Margaret Karow, Deborah Moore Lai, Dheeraj Tomar, Parker Johnson, Raphael Rozenfeld, Ronan O'Hagan, Huawei Qiu
  • Publication number: 20230235006
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 27, 2023
    Applicant: Xilio Development, Inc.
    Inventors: Margaret KAROW, Deborah Moore LAI, Dheeraj TOMAR, Parker JOHNSON, Raphael ROZENFELD, Ronan O'HAGAN, Huawei QIU
  • Publication number: 20230159603
    Abstract: The present invention relates to masked IL-12 cytokines, comprising an IL-12 cytokine or functional fragment thereof, a masking moiety and a proteolytically cleavable linker. The masking moiety masks the IL-12 cytokine or functional fragment thereof thereby reducing or preventing binding of the IL-cytokine or functional fragment thereof to its cognate receptor, but upon proteolytic cleavage of the cleavable linker at a target site, the IL-12 cytokine or functional fragment thereof becomes activated, which renders it capable or more capable of binding to its cognate receptor.
    Type: Application
    Filed: March 31, 2021
    Publication date: May 25, 2023
    Inventors: Raphael ROZENFELD, Ugur ESKIOCAK, Huawei QIU, Parker JOHNSON, Kurt Allen JENKINS, Magali PEDERZOLI-RIBEIL, Dheeraj Singh TOMAR, Rebekah Kay O'DONNELL
  • Publication number: 20230151072
    Abstract: The present invention relates to masked IL-2 cytokines, comprising an IL-2 cytokine or functional fragment thereof, a masking moiety and a proteolytically cleavable linker. The masking moiety masks the IL-2 cytokine or functional fragment thereof thereby reducing or preventing binding of the IL-cytokine or functional fragment thereof to its cognate receptor, but upon proteolytic cleavage of the cleavable linker at a target site, the IL-2 cytokine or functional fragment thereof becomes activated, which renders it capable or more capable of binding to its cognate receptor.
    Type: Application
    Filed: March 31, 2021
    Publication date: May 18, 2023
    Inventors: Raphael ROZENFELD, Ugur ESKIOCAK, Huawei QIU, Parker JOHNSON, Kurt Allen JENKINS, Magali PEDERZOLI-RIBEIL, Dheeraj Singh TOMAR, Rebekah Kay O'DONNELL
  • Publication number: 20230072822
    Abstract: The present disclosure provides tumor-specific cleavable linkers and their use in drugs and prodrugs for delivering therapeutics to a tumor cell environment. The present disclosure also provides cleavage products of said drugs and prodrugs, and methods related to the use of the same.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 9, 2023
    Inventors: Raphael ROZENFELD, Ugur ESKIOCAK, Huawei QIU, Parker JOHNSON, Kurt Allen JENKINS, Magali PEDERZOLI-RIBEIL, Dheeraj Singh TOMAR, Rebekah Kay O'DONNELL
  • Publication number: 20230030037
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Application
    Filed: June 4, 2021
    Publication date: February 2, 2023
    Applicants: Xilio Development, Inc., Xilio Development, Inc.
    Inventors: Margaret KAROW, Deborah Moore LAI, Dheeraj Singh TOMAR, Parker JOHNSON, Raphael ROZENFELD, Ronan O'HAGAN, Huawei QIU
  • Publication number: 20230028959
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Application
    Filed: June 4, 2021
    Publication date: January 26, 2023
    Inventors: Margaret KAROW, Deborah Moore LAI, Dheeraj Singh TOMAR, Parker JOHNSON, Raphael ROZENFELD, Ronan O'HAGAN, Huawei QIU
  • Publication number: 20220306716
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Application
    Filed: April 8, 2022
    Publication date: September 29, 2022
    Applicant: Xilio Development, Inc.
    Inventors: Margaret KAROW, Deborah Moore LAI, Dheeraj TOMAR, Parker JOHNSON, Raphael ROZENFELD, Ronan O'HAGAN, Huawei QIU
  • Publication number: 20220002370
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e.g., masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 6, 2022
    Inventors: Margaret KAROW, Deborah Moore LAI, Dheeraj TOMAR, Parker JOHNSON, Raphael ROZENFELD, Ronan O'HAGAN, Huawei QIU
  • Patent number: 11141423
    Abstract: Compounds and compositions useful for the treatment of liver diseases and methods of treating liver diseases are disclosed. The compounds of the invention specifically interact with heteromers of cannabinoid receptors as compared to monomers or homodimers. The invention also relates to methods of screening for compounds useful for the treatment of liver diseases and to methods of screening for diacylglycerol lipase inhibitors.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 12, 2021
    Assignee: Icahn School of Medicine at Mount Sinai
    Inventors: Lakshmi A. Devi, Raphael Rozenfeld
  • Patent number: 11053294
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e g masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: July 6, 2021
    Assignee: Xilio Development, Inc.
    Inventors: Margaret Karow, Deborah Moore Lai, Dheeraj Singh Tomar, Parker Johnson, Raphael Rozenfeld, Ronan O'Hagan, Huawei Qiu
  • Publication number: 20210002343
    Abstract: Provided herein are cytokines or functional fragments thereof that, in some embodiments, are engineered to be masked by a masking moiety at one or more receptor binding site(s) of the cytokine or functional fragment thereof. In some embodiments, the cytokines are engineered to be activatable by a protease at a target site, such as in a tumor microenvironment, by including a proteolytically cleavable linker. In some embodiments, the proteolytically cleavable linker links the cytokine to the masking moiety, links the cytokine to a half-life extension domain, and/or links the masking moiety to a half-life extension domain. The masking moiety blocks, occludes, inhibits (e.g., decreases) or otherwise prevents (e g masks) the activity or binding of the cytokine to its cognate receptor or protein. Upon proteolytic cleavage of the cleavable linker at the target site, the cytokine becomes activated, which renders it capable of binding to its cognate receptor or protein with increased affinity.
    Type: Application
    Filed: August 25, 2020
    Publication date: January 7, 2021
    Inventors: Margaret KAROW, Deborah Moore LAI, Dheeraj Singh TOMAR, Parker JOHNSON, Raphael ROZENFELD, Ronan O'HAGAN, Huawei QIU
  • Publication number: 20190374565
    Abstract: Compounds and compositions useful for the treatment of liver diseases and methods of treating liver diseases are disclosed. The compounds of the invention specifically interact with heteromers of cannabinoid receptors as compared to monomers or homodimers. The invention also relates to methods of screening for compounds useful for the treatment of liver diseases and to methods of screening for diacylglycerol lipase inhibitors.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 12, 2019
    Inventors: Lakshmi A. Devi, Raphael Rozenfeld
  • Publication number: 20180250322
    Abstract: Compounds and compositions useful for the treatment of liver diseases and methods of treating liver diseases are disclosed. The compounds of the invention specifically interact with heteromers of cannabinoid receptors as compared to monomers or homodimers. The invention also relates to methods of screening for compounds useful for the treatment of liver diseases and to methods of screening for diacylglycerol lipase inhibitors.
    Type: Application
    Filed: December 12, 2017
    Publication date: September 6, 2018
    Inventors: Lakshmi A. Devi, Raphael Rozenfeld
  • Patent number: 9855290
    Abstract: Compounds and compositions useful for the treatment of liver diseases and methods of treating liver diseases are disclosed. The compounds of the invention specifically interact with heteromers of cannabinoid receptors as compared to monomers or homodimers. The invention also relates to methods of screening for compounds useful for the treatment of liver diseases and to methods of screening for diacylglycerol lipase inhibitors.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 2, 2018
    Assignee: Icahn School of Medicine at Mount Sinai
    Inventors: Lakshmi A. Devi, Raphael Rozenfeld
  • Publication number: 20160200822
    Abstract: Compounds and compositions useful for the treatment of liver diseases and methods of treating liver diseases are disclosed. The compounds of the invention specifically interact with heteromers of cannabinoid receptors as compared to monomers or homodimers. The invention also relates to methods of screening for compounds useful for the treatment of liver diseases and to methods of screening for diacylglycerol lipase inhibitors.
    Type: Application
    Filed: December 1, 2015
    Publication date: July 14, 2016
    Inventors: Lakshmi A. Devi, Raphael Rozenfeld