Patents by Inventor Raqibul Hasan

Raqibul Hasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954588
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to each corresponding input voltage signal. Input voltages are applied to the analog neuromorphic circuit. Each input voltage represents a vector value that is a non-binary value included in a vector that is incorporated into a dot-product operation with weighted matrix values included in a weighted matrix. A controller pairs each resistive memory with another resistive memory. The controller converts each pair of resistance values to a single non-binary value. Each single non-binary value is mapped to a weighted matrix value included in the weighted matrix that is incorporated into the dot-product operation with the vector values included in the vector. The controller generates dot-product operation values from the dot-product operation with the vector and the weighted matrix where each dot-product operation is a non-binary value.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: April 9, 2024
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Tarek M. Taha, Md Raqibul Hasan
  • Patent number: 11907831
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: February 20, 2024
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Md Raqibul Hasan, Tarek M. Taha
  • Publication number: 20230409893
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to an input voltage signal as the input voltage signal propagates through the resistive memories generating a first output voltage signal and to provide a resistance to a first error signal that propagates through the resistive memories generating a second output voltage signal. A comparator generates the first error signal that is representative of a difference between the first output voltage signal and the desired output signal and generates the first error signal so that the first error signal propagates back through the plurality of resistive memories. A resistance adjuster adjusts a resistance value associated with each resistive memory based on the first error signal and the second output voltage signal to decrease the difference between the first output voltage signal and the desired output signal.
    Type: Application
    Filed: September 5, 2023
    Publication date: December 21, 2023
    Inventors: Tarek M. Taha, Md Raqibul Hasan, Chris Yakopcic
  • Patent number: 11748609
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to an input voltage signal as the input voltage signal propagates through the resistive memories generating a first output voltage signal and to provide a resistance to a first error signal that propagates through the resistive memories generating a second output voltage signal. A comparator generates the first error signal that is representative of a difference between the first output voltage signal and the desired output signal and generates the first error signal so that the first error signal propagates back through the plurality of resistive memories. A resistance adjuster adjusts a resistance value associated with each resistive memory based on the first error signal and the second output voltage signal to decrease the difference between the first output voltage signal and the desired output signal.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: September 5, 2023
    Assignee: University of Dayton
    Inventors: Tarek M. Taha, Md Raqibul Hasan, Chris Yakopcic
  • Publication number: 20230095626
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Inventors: Chris Yakopcic, Raqibul Hasan, Tarek M. Taha
  • Patent number: 11521054
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: December 6, 2022
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Md Raqibul Hasan, Tarek M. Taha
  • Publication number: 20210326688
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Chris Yakopcic, Md Raqibul Hasan, Tarek M. Taha
  • Publication number: 20210326689
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to each corresponding input voltage signal. Input voltages are applied to the analog neuromorphic circuit. Each input voltage represents a vector value that is a non-binary value included in a vector that is incorporated into a dot-product operation with weighted matrix values included in a weighted matrix. A controller pairs each resistive memory with another resistive memory. The controller converts each pair of resistance values to a single non-binary value. Each single non-binary value is mapped to a weighted matrix value included in the weighted matrix that is incorporated into the dot-product operation with the vector values included in the vector. The controller generates dot-product operation values from the dot-product operation with the vector and the weighted matrix where each dot-product operation is a non-binary value.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Chris Yakopcic, Tarek M. Taha, Md Raqibul Hasan
  • Patent number: 11087208
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to each corresponding input voltage signal. Input voltages are applied to the analog neuromorphic circuit. Each input voltage represents a vector value that is a non-binary value included in a vector that is incorporated into a dot-product operation with weighted matrix values included in a weighted matrix. A controller pairs each resistive memory with another resistive memory. The controller converts each pair of resistance values to a single non-binary value. Each single non-binary value is mapped to a weighted matrix value included in the weighted matrix that is incorporated into the dot-product operation with the vector values included in the vector. The controller generates dot-product operation values from the dot-product operation with the vector and the weighted matrix where each dot-product operation is a non-binary value.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: August 10, 2021
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Tarek M. Taha, Md Raqibul Hasan
  • Publication number: 20210201125
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to an input voltage signal as the input voltage signal propagates through the resistive memories generating a first output voltage signal and to provide a resistance to a first error signal that propagates through the resistive memories generating a second output voltage signal. A comparator generates the first error signal that is representative of a difference between the first output voltage signal and the desired output signal and generates the first error signal so that the first error signal propagates back through the plurality of resistive memories. A resistance adjuster adjusts a resistance value associated with each resistive memory based on the first error signal and the second output voltage signal to decrease the difference between the first output voltage signal and the desired output signal.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 1, 2021
    Inventors: Tarek M. Taha, Md Raqibul Hasan, Chris Yakopcic
  • Patent number: 11049003
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: June 29, 2021
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Md Raqibul Hasan, Tarek M. Taha
  • Publication number: 20210019610
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to each corresponding input voltage signal. Input voltages are applied to the analog neuromorphic circuit. Each input voltage represents a vector value that is a non-binary value included in a vector that is incorporated into a dot-product operation with weighted matrixvalues included in a weighted matrix. A controller pairs each resistive memory with another resistive memory. The controller converts each pair of resistance values to a single non-binary value. Each single non-binary value is mapped to a weighted matrix value included in theweighted matrix that is incorporated into the dot-product operation with the vector values included in the vector. The controller generates dot-product operation values from the dot-product operation with the vector and the weighted matrix where each dot-product operation is a non-binary value.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 21, 2021
    Inventors: Chris Yakopcic, Tarek M. Taha, Md Raqibul Hasan
  • Patent number: 10885429
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to an input voltage signal as the input voltage signal propagates through the resistive memories generating a first output voltage signal and to provide a resistance to a first error signal that propagates through the resistive memories generating a second output voltage signal. A comparator generates the first error signal that is representative of a difference between the first output voltage signal and the desired output signal and generates the first error signal so that the first error signal propagates back through the plurality of resistive memories. A resistance adjuster adjusts a resistance value associated with each resistive memory based on the first error signal and the second output voltage signal to decrease the difference between the first output voltage signal and the desired output signal.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: January 5, 2021
    Assignee: University of Dayton
    Inventors: Tarek M. Taha, Raqibul Hasan, Chris Yakopcic
  • Publication number: 20200364550
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Application
    Filed: June 1, 2020
    Publication date: November 19, 2020
    Inventors: Chris Yakopcic, Md Raqibul Hasan, Tarek M. Taha
  • Patent number: 10789528
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to each corresponding input voltage signal. Input voltages are applied to the analog neuromorphic circuit. Each input voltage represents a vector value that is a non-binary value included in a vector that is incorporated into a dot-product operation with weighted matrix values included in a weighted matrix. A controller pairs each resistive memory with another resistive memory. The controller converts each pair of resistance values to a single non-binary value. Each single non-binary value is mapped to a weighted matrix value included in the weighted matrix that is incorporated into the dot-product operation with the vector values included in the vector. The controller generates dot-product operation values from the dot-product operation with the vector and the weighted matrix where each dot-product operation is a non-binary value.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: September 29, 2020
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Tarek M. Taha, Md Raqibul Hasan
  • Patent number: 10671914
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: June 2, 2020
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Md Raqibul Hasan, Tarek M. Taha
  • Publication number: 20200074291
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Application
    Filed: November 11, 2019
    Publication date: March 5, 2020
    Inventors: Chris Yakopcic, Md Raqibul Hasan, Tarek M. Taha
  • Patent number: 10474948
    Abstract: An analog neuromorphic circuit is disclosed, having input voltages applied to a plurality of inputs of the analog neuromorphic circuit. The circuit also includes a plurality of resistive memories that provide a resistance to each input voltage applied to each of the inputs so that each input voltage is multiplied in parallel by the corresponding resistance of each corresponding resistive memory to generate a corresponding current for each input voltage and each corresponding current is added in parallel. The circuit also includes at least one output signal that is generated from each of the input voltages multiplied in parallel with each of the corresponding currents for each of the input voltages added in parallel. The multiplying of each input voltage with each corresponding resistance is executed simultaneously with adding each corresponding current for each input voltage.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: November 12, 2019
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Raqibul Hasan, Tarek M. Taha
  • Publication number: 20190332930
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to each corresponding input voltage signal. Input voltages are applied to the analog neuromorphic circuit. Each input voltage represents a vector value that is a non-binary value included in a vector that is incorporated into a dot-product operation with weighted matrix values included in a weighted matrix. A controller pairs each resistive memory with another resistive memory. The controller converts each pair of resistance values to a single non-binary value. Each single non-binary value is mapped to a weighted matrix value included in the weighted matrix that is incorporated into the dot-product operation with the vector values included in the vector. The controller generates dot-product operation values from the dot-product operation with the vector and the weighted matrix where each dot-product operation is a non-binary value.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Chris Yakopcic, Tarek M. Taha, Md Raqibul Hasan
  • Patent number: 10346738
    Abstract: An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to each corresponding input voltage signal. Input voltages are applied to the analog neuromorphic circuit. Each input voltage represents a vector value that is a non-binary value included in a vector that is incorporated into a dot-product operation with weighted matrix values included in a weighted matrix. A controller pairs each resistive memory with another resistive memory. The controller converts each pair of resistance values to a single non-binary value. Each single non-binary value is mapped to a weighted matrix value included in the weighted matrix that is incorporated into the dot-product operation with the vector values included in the vector. The controller generates dot-product operation values from the dot-product operation with the vector and the weighted matrix where each dot-product operation is a non-binary value.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 9, 2019
    Assignee: University of Dayton
    Inventors: Chris Yakopcic, Tarek M. Taha, Md Raqibul Hasan