Patents by Inventor Rasmus TRANE-RESTRUP

Rasmus TRANE-RESTRUP has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10933372
    Abstract: Oxygen is removed from a gas feed such as a landfill gas, a digester gas or an industrial CO2 off-gas by heating the feed gas, optionally removing siloxanes and silanols from the heated feed gas, optionally removing part of the sulfur-containing compounds in the heated feed gas, injecting one or more reactants for oxygen conversion into the heated feed gas, carrying out a selective catalytic conversion of any or all of the volatile organic compounds (VOCs) present in the gas, including sulfur-containing compounds, chlorine-containing compounds and any of the reactants injected, in at least one suitable reactor, and cleaning the resulting oxygen-depleted gas. The reactants to be injected comprise one or more of H2, CO, ammonia, urea, methanol, ethanol and dimethyl ether (DME).
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: March 2, 2021
    Assignee: Haldor Topsoe A/S
    Inventors: Kresten Egeblad, Niklas Bengt Jakobsson, Rasmus Trane-Restrup, Jacob Hjerrild Zeuthen, Troels Dahlgaard Stummann
  • Patent number: 10722843
    Abstract: The present invention relates to a method and a system for catalytic oxidation of a lean H2S stream. More specifically, the invention concerns a novel way of removing sulfur dioxide (SO2) formed by catalytic oxidation of hydrogen sulfide (H2S) with the purpose of removing H2S from a gas. This catalytic oxidation of H2S yields sulfur dioxide (SO2) through the use of known catalysts, so-called SMC catalysts.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: July 28, 2020
    Assignee: HALDOR TOPSØE A/S
    Inventors: Hans Qiongxiao Wu, Tommy Bian Xiang, Niklas Bengt Jakobsson, Rasmus Trane-Restrup, Souheil Saadi
  • Patent number: 10675585
    Abstract: Oxygen is removed from a gas feed such as a landfill gas, a digester gas or an industrial CO2 off-gas by removing sulfur-containing compounds and siloxanes from the feed gas, heating the feed gas, injecting one or more reactants for oxygen conversion into the heated feed gas, carrying out a selective catalytic oxygen conversion in at least onesuitable reactor and cleaning the resulting oxygen-depleted gas. The reactants to be injected comprise one or more of H2, CO, ammonia, urea, methanol, ethanol and dimethylether (DME).
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: June 9, 2020
    Assignee: Haldor Topsoe A/S
    Inventors: Niklas Bengt Jakobsson, Kresten Egeblad, Jacob Hjerrild Zeuthen, Rasmus Trane-Restrup
  • Patent number: 10661224
    Abstract: A method for the purification of a raw gas stream by selective catalytic oxidation, in which organic and inorganic sulfur compounds, halogenated and non-halogenated volatile organic compounds are selectively oxidized without substantially oxidizing the lower hydrocarbons and the sulfur containing compounds present in the gas to sulfur trioxide and excess of oxygen is removed by oxidation of lower alcohols, ethers or hydrogen added to the raw gas stream upstream the catalytic oxidation.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: May 26, 2020
    Assignee: Haldor Topsoe A/S
    Inventors: Kresten Egeblad, Niklas Bengt Jakobsson, Jacob Hjerrild Zeuthen, Rasmus Trane-Restrup
  • Publication number: 20200147547
    Abstract: Oxygen is removed from a gas feed such as a landfill gas, a digester gas or an industrial CO2 off-gas by heating the feed gas, optionally removing siloxanes and silanols from the heated feed gas, optionally removing part of the sulfur-containing compounds in the heated feed gas, injecting one or more reactants for oxygen conversion into the heated feed gas, carrying out a selective catalytic conversion of any or all of the volatile organic compounds (VOCs) present in the gas, including sulfur-containing compounds, chlorine-containing compounds and any of the reactants injected, in at least one suitable reactor, and cleaning the resulting oxygen-depleted gas. The reactants to be injected comprise one or more of H2, CO, ammonia, urea, methanol, ethanol and dimethyl ether (DME).
    Type: Application
    Filed: February 7, 2018
    Publication date: May 14, 2020
    Applicant: Haldor Topsøe A/S
    Inventors: Kresten Egeblad, Niklas Bengt Jakobsson, Rasmus Trane-Restrup, Jacob Hjerrild Zeuthen, Troels Dahlgaard Stummann
  • Patent number: 10549991
    Abstract: The present disclosure relates to a process plant and a process for production of a hydrogen rich gas, comprising the steps of (a) directing an amount of a synthesis gas comprising at least 15%, 50% or 80% on dry basis of CO and H2 in combination, a gas comprising steam, and a recycled intermediate product gas to be combined into a first reactor feed gas, (b) directing said first reactor feed gas to contact a first material catalytically active in water gas shift reaction, producing an intermediate product gas, (c) splitting said intermediate product gas in the recycled intermediate product gas and a remaining intermediate product gas, (d) combining said remaining intermediate product gas with a further amount of synthesis gas forming a second reactor feed gas, (e) directing said second reactor feed gas to contact a second material catalytically active in the water gas shift reaction, producing a product gas, characterized in the H2O:CO ratio in said first reactor feed gas being from 0.5 to 2.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 4, 2020
    Assignee: HALDOR TOPSØE A/S4
    Inventors: Christian Wix, Ib Dybkjær, Rasmus Trane-Restrup
  • Publication number: 20190366266
    Abstract: The present invention relates to a method and a system for catalytic oxidation of a lean H2S stream. More specifically, the invention concerns a novel way of removing sulfur dioxide (SO2) formed by catalytic oxidation of hydrogen sulfide (H2S) with the purpose of removing H2S from a gas. This catalytic oxidation of H2S yields sulfur dioxide (SO2) through the use of known catalysts, so-called SMC catalysts.
    Type: Application
    Filed: January 11, 2018
    Publication date: December 5, 2019
    Applicant: HALDOR TOPSØE A/S
    Inventors: Hans Qiongxiao WU, Tommy Bian XIANG, Niklas Bengt JAKOBSSON, Rasmus TRANE-RESTRUP, Souheil SAADI
  • Publication number: 20190314759
    Abstract: In a process for the removal of hydrogen chloride and/or sulfur oxides from a landfill gas stream, which contains impurities such as siloxanes, H2S, organic and inorganic sulfides and volatile organic compounds (VOCs), the heated gas is passed through a siloxane removal bed, where siloxanes are absorbed and then through one or more sulfur removal beds, where hydrogen sulfide and/or organic sulfides are absorbed. The effluent is passed through a reactor containing an oxidation catalyst enabling catalytic oxidation of VOCs, organic and inorganic CI- and/or S-containing compounds, COS and CS2 to their respective combustion products, and finally the effluent from the reactor is passed through one or more beds, where hydrogen chloride and/or sulfur oxides are absorbed.
    Type: Application
    Filed: December 1, 2017
    Publication date: October 17, 2019
    Inventors: Kresten Egeblad, Jacob Brinch Frennegaard, Rasmus Trane-Restrup, Niklas Bengt Jakobsson
  • Publication number: 20190126199
    Abstract: A method for the purification of a raw gas stream by selective catalytic oxidation, in which organic and inorganic sulfur compounds, halogenated and non-halogenated volatile organic compounds are selectively oxidized without substantially oxidizing the lower hydrocarbons and the sulfur containing compounds present in the gas to sulfur trioxide and excess of oxygen is removed by oxidation of lower alcohols, ethers or hydrogen added to the raw gas stream upstream the catalytic oxidation.
    Type: Application
    Filed: May 10, 2017
    Publication date: May 2, 2019
    Applicant: Haldor Topsøe A/S
    Inventors: Kresten Egeblad, Niklas Bengt Jakobsson, Jacob Hjerrild Zeuthen, Rasmus Trane-Restrup
  • Publication number: 20190126201
    Abstract: Oxygen is removed from a gas feed such as a landfill gas, a digester gas or an industrial CO2 off-gas by removing sulfur-containing compounds and siloxanes from the feed gas, heating the feed gas, injecting one or more reactants for oxygen conversion into the heated feed gas, carrying out a selective catalytic oxygen conversion in at least onesuitable reactor and cleaning the resulting oxygen-depleted gas. The reactants to be injected comprise one or more of H2, CO, ammonia, urea, methanol, ethanol and dimethylether (DME).
    Type: Application
    Filed: May 3, 2017
    Publication date: May 2, 2019
    Applicant: Haldor Topsøe A/S
    Inventors: Niklas Bengt Jakobsson, Kresten Egeblad, Jacob Hjerrild Zeuthen, Rasmus Trane-Restrup
  • Publication number: 20170355601
    Abstract: The present disclosure relates to a process plant and a process for production of a hydrogen rich gas, comprising the steps of (a) directing an amount of a synthesis gas comprising at least 15%, 50% or 80% on dry basis of CO and H2 in combination, a gas comprising steam, and a recycled intermediate product gas to be combined into a first reactor feed gas, (b) directing said first reactor feed gas to contact a first material catalytically active in water gas shift reaction, producing an intermediate product gas, (c) splitting said intermediate product gas in the recycled intermediate product gas and a remaining intermediate product gas, (d) combining said remaining intermediate product gas with a further amount of synthesis gas forming a second reactor feed gas, (e) directing said second reactor feed gas to contact a second material catalytically active in the water gas shift reaction, producing a product gas, characterized in the H2O:CO ratio in said first reactor feed gas being from 0.5 to 2.
    Type: Application
    Filed: February 26, 2016
    Publication date: December 14, 2017
    Inventors: Christian WIX, Ib DYBKJÆR, Rasmus TRANE-RESTRUP