Patents by Inventor Ratnakumar V. Bugga

Ratnakumar V. Bugga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230318079
    Abstract: In some embodiments, a heat transfer device can include a case configured to receive at least one thermal element. The case can include an integrated oscillating heat pipe. The integrated oscillating heat pipe can be integrated into at least one wall of the case. The heat transfer device can further include a heatsink element. The heatsink element is in contact with at least one wall of the case. The integrated oscillating heat pipe can have two or more layers, and can extend in three dimensions.
    Type: Application
    Filed: April 3, 2023
    Publication date: October 5, 2023
    Applicant: California Institute of Technology
    Inventors: Ratnakumar V. Bugga, Scott N. Roberts, Benjamin I. Furst
  • Patent number: 11114713
    Abstract: Thermal management systems for battery cells and methods for their additive manufacture are provided. The thermal management systems include at least one heat pipe that physically contacts the battery cell and conforms to its geometry. Each battery cell is deposited within a separate heat pipe, and each heat pipe is disposed on a base plate, which itself connects to a heat sink. In many embodiments, the heat pipe is a two-phase heat exchanger having three major components: liquid channels, wick elements, and vapor channels. In such embodiments, the wick component comprises a porous body configured to be disposed between the liquid channels and vapor channels. The wick component may be made using a stochastic additive manufacturing process such that the wick component may take any configuration and/or such that the wick component may be directly integrated into the body of the heat pipe as a unitary piece thereof.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: September 7, 2021
    Assignee: California Institute of Technology
    Inventors: Eric T. Sunada, Scott N. Roberts, Benjamin I. Furst, Ratnakumar V. Bugga
  • Publication number: 20190393576
    Abstract: Thermal management systems for battery cells and methods for their additive manufacture are provided. The thermal management systems include at least one heat pipe that physically contacts the battery cell and conforms to its geometry. Each battery cell is deposited within a separate heat pipe, and each heat pipe is disposed on a base plate, which itself connects to a heat sink. In many embodiments, the heat pipe is a two-phase heat exchanger having three major components: liquid channels, wick elements, and vapor channels. In such embodiments, the wick component comprises a porous body configured to be disposed between the liquid channels and vapor channels. The wick component may be made using a stochastic additive manufacturing process such that the wick component may take any configuration and/or such that the wick component may be directly integrated into the body of the heat pipe as a unitary piece thereof.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 26, 2019
    Applicant: California Institute of Technology
    Inventors: Eric T. Sunada, Scott N. Roberts, Benjamin I. Furst, Ratnakumar V. Bugga
  • Patent number: 10439212
    Abstract: Composite cathode materials are provided herein. Disclosed composite cathode materials include those comprising an aluminum borate coating. Systems making use of the cathode active materials are also described, such as electrochemical cells and electrodes for use in electrochemical cells. Methods for making and using the composite cathode materials are also disclosed.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: October 8, 2019
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Ratnakumar V. Bugga, Candace S. Seu
  • Patent number: 10340553
    Abstract: Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: July 2, 2019
    Assignee: California Institute of Technology
    Inventors: Marshall C. Smart, Ratnakumar V. Bugga
  • Patent number: 10153528
    Abstract: Metal hydride-air batteries and methods for their use are provided. An exemplary metal-hydride air battery includes an alkaline exchange membrane provided between the positive electrode and the negative electrode of the battery. The alkaline exchange membrane provides for transfer of hydroxide ions through the membrane. Optionally the alkaline exchange membrane limits transport of other species through the membrane.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: December 11, 2018
    Assignee: California Institute of Technology
    Inventors: Ratnakumar V. Bugga, Andrew Kindler, Thomas I. Valdez
  • Patent number: 9947960
    Abstract: A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 wt % to approximately 2.0 wt % based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 wt % to approximately 2.0 wt % based on the weight of the electrolyte.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: April 17, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Boutros Hallac, Marshall C. Smart, Frederick C. Krause, Bernhard M. Metz, Ratnakumar V. Bugga, Junwei Jiang
  • Publication number: 20170012284
    Abstract: Composite cathode materials are provided herein. Disclosed composite cathode materials include those comprising an aluminum borate coating. Systems making use of the cathode active materials are also described, such as electrochemical cells and electrodes for use in electrochemical cells. Methods for making and using the composite cathode materials are also disclosed.
    Type: Application
    Filed: July 8, 2016
    Publication date: January 12, 2017
    Inventors: Ratnakumar V. Bugga, Candace S. Seu
  • Publication number: 20160248136
    Abstract: Metal hydride-air batteries and methods for their use are provided. An exemplary metal-hydride air battery includes an alkaline exchange membrane provided between the positive electrode and the negative electrode of the battery. The alkaline exchange membrane provides for transfer of hydroxide ions through the membrane. Optionally the alkaline exchange membrane limits transport of other species through the membrane.
    Type: Application
    Filed: March 6, 2015
    Publication date: August 25, 2016
    Inventors: Ratnakumar V. BUGGA, Andrew KINDLER, Thomas I. VALDEZ
  • Publication number: 20160197378
    Abstract: Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.
    Type: Application
    Filed: February 16, 2016
    Publication date: July 7, 2016
    Inventors: Marshall C. SMART, Ratnakumar V. BUGGA
  • Publication number: 20160149263
    Abstract: A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte includes a solvent mixture and a lithium salt serving as a primary lithium ion conductor in the electrolyte to allow for lithium ion intercalation and deintercalation processes at the cathode and the anode during charging and discharging of the lithium ion battery cell. The solvent mixture includes a cyclic carbonate and one or more non-cyclic carbonates. The lithium salt is lithium bis(fluorosulfonyl)imide (LiFSI). The solvent mixture and LiFSI are configured to enhance the low temperature performance of the lithium ion battery cell at operating temperatures below 0° C.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 26, 2016
    Inventors: Boutros Hallac, Marshall C. Smart, Frederick C. Krause, Bernhard M. Metz, Ratnakumar V. Bugga
  • Patent number: 9324507
    Abstract: Systems and methods in accordance with embodiments of the invention implement high-temperature tolerant supercapacitors. In one embodiment, a high-temperature tolerant super capacitor includes a first electrode that is thermally stable between at least approximately 80° C. and approximately 300° C.; a second electrode that is thermally stable between at least approximately 80° C. and approximately 300° C.; an ionically conductive separator that is thermally stable between at least approximately 80° C. and 300° C.; an electrolyte that is thermally stable between approximately at least 80° C. and approximately 300° C.; where the first electrode and second electrode are separated by the separator such that the first electrode and second electrode are not in physical contact; and where each of the first electrode and second electrode is at least partially immersed in the electrolyte solution.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: April 26, 2016
    Assignee: California Institute of Technology
    Inventors: Erik J. Brandon, William C. West, Ratnakumar V. Bugga
  • Patent number: 9293773
    Abstract: Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: March 22, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Marshall C. Smart, Ratnakumar V. Bugga
  • Patent number: 9190698
    Abstract: The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 17, 2015
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Marshall C. Smart, Ratnakumar V. Bugga, Surya G. Prakash, Frederick C. Krause
  • Publication number: 20150221977
    Abstract: A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 wt % to approximately 2.0 wt % based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 wt % to approximately 2.0 wt % based on the weight of the electrolyte.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 6, 2015
    Inventors: Boutros Hallac, Marshall C. Smart, Frederick C. Krause, Bernhard M. Metz, Ratnakumar V. Bugga, Junwei Jiang
  • Patent number: 8920981
    Abstract: There is provided in one embodiment of the invention an electrolyte for use in a lithium ion electrochemical cell. The electrolyte comprises a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), an ester cosolvent, and a lithium salt. The ester cosolvent comprises methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), or butyl butyrate (BB). The electrochemical cell operates in a temperature range of from about ?60 degrees Celsius to about 60 degrees Celsius. In another embodiment there is provided a lithium ion electrochemical cell using the electrolyte of the invention.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: December 30, 2014
    Assignee: California Institute of Technology
    Inventors: Marshall C. Smart, Ratnakumar V. Bugga
  • Publication number: 20140362495
    Abstract: Systems and methods in accordance with embodiments of the invention implement high-temperature tolerant supercapacitors. In one embodiment, a high-temperature tolerant super capacitor includes a first electrode that is thermally stable between at least approximately 80° C. and approximately 300° C.; a second electrode that is thermally stable between at least approximately 80° C. and approximately 300° C.; an ionically conductive separator that is thermally stable between at least approximately 80° C. and 300° C.; an electrolyte that is thermally stable between approximately at least 80° C. and approximately 300° C.; where the first electrode and second electrode are separated by the separator such that the first electrode and second electrode are not in physical contact; and where each of the first electrode and second electrode is at least partially immersed in the electrolyte solution.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 11, 2014
    Inventors: Erik J. Brandon, William C. West, Ratnakumar V. Bugga
  • Patent number: 8889300
    Abstract: Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: November 18, 2014
    Assignee: California Institute of Technology
    Inventors: Ratnakumar V. Bugga, William C. West, Andrew Kindler, Marshall C. Smart
  • Patent number: 8795903
    Abstract: The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: August 5, 2014
    Assignee: California Institute of Technology
    Inventors: Marshall C. Smart, Kiah A. Smith, Ratnakumar V. Bugga, Surya G. Prakash, Frederick Charles Krause
  • Patent number: 8748046
    Abstract: An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: June 10, 2014
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Marshall C. Smart, Ratnakumar V. Bugga, G. K. Surya Prakash, Kiah Smith, Pooja Bhalla