Patents by Inventor Raul Basilio Rebak

Raul Basilio Rebak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10179943
    Abstract: An article and method of forming the article are disclosed. The article has a surface comprising a nanostructured ferritic alloy. The surface includes a plurality of nanofeatures that include complex oxides of yttrium and titanium disposed in an iron-bearing alloy matrix. The iron-bearing alloy matrix at the surface includes about 5 weight percent to about 30 weight percent of chromium, and about 0.1 weight percent to about 10 weight percent of molybdenum. Further, a concentration of a chi phase or a sigma phase in the nanostructured ferritic alloy at the surface is less than about 5 volume percent. The method generally includes the steps of milling, thermo-mechanically consolidating, annealing, and then cooling at a rate that hinders the formation of chi and sigma phases in the nanostructured ferritic alloy at the surface.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: January 15, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Shenyan Huang, Richard Didomizio, Raul Basilio Rebak
  • Patent number: 10100414
    Abstract: An article exhibiting magnetic properties, a method for providing corrosion resistance to an article, and an electric machine element are disclosed. The article comprises a substrate comprising a first portion of a magnetic material, the magnetic material exhibiting magnetic properties. The article further comprises a transition layer comprising a second portion of the magnetic material and a first portion of a coating material. The transition layer is disposed on at least a portion of the substrate. The article further comprises an outer layer comprising a second portion of the coating material. The outer layer is disposed on at least a portion of the transition layer.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: October 16, 2018
    Assignee: General Electric Company
    Inventors: Steve J. Buresh, Paul A. Siemers, Jeremy Van Dam, Raul Basilio Rebak
  • Publication number: 20160207110
    Abstract: An article and method of forming the article are disclosed. The article has a surface comprising a duplex nanostructured ferritic alloy. The surface includes a plurality of nanofeatures that include complex oxides of yttrium and titanium disposed in an iron-bearing alloy matrix. The iron-bearing alloy matrix includes both a ferrite phase and an austenite phase. Further, a concentration of a chi phase or a sigma phase in the duplex nanostructured ferritic alloy at the surface is less than about 5 volume percent. The method generally includes the steps of milling, thermo-mechanically consolidating, annealing, and then cooling at a rate that hinders the formation of chi and sigma phases in the duplex nanostructured ferritic alloy at the surface.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 21, 2016
    Inventors: Shenyan Huang, Raul Basilio Rebak, Richard DiDomizio, Emanuele Pietrangeli
  • Publication number: 20160017464
    Abstract: An article and method of forming the article are disclosed. The article has a surface comprising a nanostructured ferritic alloy. The surface includes a plurality of nanofeatures that include complex oxides of yttrium and titanium disposed in an iron-bearing alloy matrix. The iron-bearing alloy matrix at the surface includes about 5 weight percent to about 30 weight percent of chromium, and about 0.1 weight percent to about 10 weight percent of molybdenum. Further, a concentration of a chi phase or a sigma phase in the nanostructured ferritic alloy at the surface is less than about 5 volume percent. The method generally includes the steps of milling, thermo-mechanically consolidating, annealing, and then cooling at a rate that hinders the formation of chi and sigma phases in the nanostructured ferritic alloy at the surface.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 21, 2016
    Inventors: Shenyan Huang, Richard Didomizio, Raul Basilio Rebak
  • Patent number: 8910379
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: December 16, 2014
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, Lawrence Bernard Kool
  • Publication number: 20140170015
    Abstract: A steel composition resistant to sulfidic corrosion has been discovered. The newly discovered steel composition comprises the elements Fe, C, Si, Cu, and Mn wherein the composition comprises from about 96.80 to about 99.00 percent by weight iron, from about 0.10 to about 0.30 percent by weight carbon, from about 0.20 to about 1.40 percent by weight silicon, from about 0.50 to about 1.50 percent by weight copper, and from about 0.20 to about 1.00 percent by weight manganese, wherein the composition is substantially free of chromium, and wherein the composition contains less than 0.1 percent by weight nickel, molybdenum, or tungsten.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicants: GENERAL ELECTRIC COMPANY
    Inventors: Raul Basilio Rebak, Andrew David Deal, Voramon Supatarawanich Dheeradhada, Judson Sloan Marte, Raghavendra Rao Adharapurapu
  • Patent number: 8739404
    Abstract: The present disclosure is directed to the use and manufacture of cooling features within a component used in a hot gas path, such as within a turbine. In one embodiment, channels are formed within an external surface of the component and filled with a removable material. The external surface and channels may then be coated with one or more layers, such as a structural layer and/or top coat. The removable material may then be removed to leave the channels free of the removable material.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Bin Wei, Ann Melinda Ritter, Don Mark Lipkin, Raul Basilio Rebak, Lawrence Bernard Kool, Dennis Michael Gray
  • Publication number: 20140037850
    Abstract: The present invention provides a method of protecting refinery equipment, the method comprising: (a) applying an uncured organic coating comprising a curable epoxy phenol novolac resin and a curing agent comprising a vicinal primary diamine moiety to a surface of refinery equipment susceptible to corrosion and/or wear; and (b) curing the uncured coating to form a cured coating having a viscosity of at least 2,000,000 centipoise; wherein the uncured organic coating has a viscosity of less than 500,000 centipoise, and wherein the uncured coating is substantially free of components comprising secondary and tertiary amine groups, and wherein the uncured coating is characterized by a latent viscosity of at least 2,000,000 when cured for 1 hour at 50° C.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Donald Joseph Buckley, JR., Lawrence Bernard Kool, Raul Basilio Rebak, Dennis Michael Gray, Brent Allen Clothier, Grzegorz Jan Kusinski
  • Publication number: 20140004310
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 2, 2014
    Applicant: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, Lawrence Bernard Kool
  • Patent number: 8601691
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, John Brian McDermott, Lawrence Bernard Kool, Ann Melinda Ritter
  • Patent number: 8528208
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface. A sacrificial filler is deposited within the groove, a second filler is deposited over the sacrificial filler, and a coating is disposed over at least a portion of the outer surface and over the second filler. The method further includes removing the sacrificial filler and at least partially removing the second filler from the groove(s), to define one or more channels for cooling the component.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Ronald Scott Bunker, Lawrence Bernard Kool, Don Mark Lipkin, John Brian McDermott, Ann Melinda Ritter, Renee Bushey Rohling
  • Publication number: 20130196145
    Abstract: An article exhibiting magnetic properties, a method for providing corrosion resistance to an article, and an electric machine element are disclosed. The article comprises a substrate comprising a first portion of a magnetic material, the magnetic material exhibiting magnetic properties. The article further comprises a transition layer comprising a second portion of the magnetic material and a first portion of a coating material. The transition layer is disposed on at least a portion of the substrate. The article further comprises an outer layer comprising a second portion of the coating material. The outer layer is disposed on at least a portion of the transition layer.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: General Electric Company
    Inventors: Steve J. Buresh, Paul A. Siemers, Jeremy Van Dam, Raul Basilio Rebak
  • Publication number: 20120276308
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, John Brian McDermott, Lawrence Bernard Kool, Ann Melinda Ritter
  • Publication number: 20120255870
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface. A sacrificial filler is deposited within the groove, a second filler is deposited over the sacrificial filler, and a coating is disposed over at least a portion of the outer surface and over the second filler. The method further includes removing the sacrificial filler and at least partially removing the second filler from the groove(s), to define one or more channels for cooling the component.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raul Basilio Rebak, Ronald Scott Bunker, Lawrence Bernard Kool, Don Mark Lipkin, John Brian McDermott, Ann Melinda Ritter, Renee Bushey Rohling
  • Publication number: 20120124832
    Abstract: The present disclosure is directed to the use and manufacture of cooling features within a component used in a hot gas path, such as within a turbine. In one embodiment, channels are formed within an external surface of the component and filled with a removable material. The external surface and channels may then be coated with one or more layers, such as a structural layer and/or top coat. The removable material may then be removed to leave the channels free of the removable material.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: General Electric Company
    Inventors: Ronald Scott Bunker, Bin Wei, Ann Melinda Ritter, Don Mark Lipkin, Raul Basilio Rebak, Lawrence Bernard Kool, Dennis Michael Gray
  • Publication number: 20120114868
    Abstract: A method of fabricating a component is provided. The method includes depositing a fugitive coating on a surface of a substrate, where the substrate has at least one hollow interior space. The method further includes machining the substrate through the fugitive coating to form one or more grooves in the surface of the substrate. Each of the one or more grooves has a base and extends at least partially along the surface of the substrate. The method further includes forming one or more access holes through the base of a respective one of the one or more grooves to connect the respective groove in fluid communication with the respective hollow interior space. The method further includes filling the one or more grooves with a filler, removing the fugitive coating, disposing a coating over at least a portion of the surface of the substrate, and removing the filler from the one or more grooves, such that the one or more grooves and the coating together define a number of channels for cooling the component.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 10, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Bin Wei, Don Mark Lipkin, Raul Basilio Rebak
  • Publication number: 20110240715
    Abstract: A nickel-based alloy and welding processes and consumables that use the alloy as a weld filler metal to fabricate, weld overlay, and repair components, including components of nuclear power plant reactors that contact the hot coolant water of the reactor. The nickel-based alloy consists of, by weight, 26 to about 30% chromium, 2 to about 4% iron, 2 to about 4% manganese, 2 to about 3% niobium, 1 to about 3% molybdenum, not more than 0.6% titanium, not more than 0.03% carbon, not more than 0.05% nitrogen, not more than 0.6% aluminum, not more than 0.5% silicon, not more than 0.01% copper, not more than 0.02% phosphorus, not more than 0.01% sulfur, with the balance nickel and incidental impurities.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicants: GE-Hitachi Nuclear Energy Americas LLC, The Tokyo Electric Power Company
    Inventors: Raul Basilio Rebak, Peter Louis Andresen, Martin Mathew Morra, Suguru Oki, Hideshi Tezuka