Patents by Inventor Raul Chipana Quispe

Raul Chipana Quispe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11552810
    Abstract: The generation of “fingerprints”, also called challenge-response pairs (CRPs) of Physically Unclonable Functions (PUFs), can often stress electronic components, leaving behind traces that can be exploited by crypto-analysts. A non-intrusive method to generate CRPs based on Resistive RAMs may instead be used, which does not disturb the memory cells. The injection of small electric currents (magnitude of nanoAmperes) in each cell causes the resistance of each cell to drop abruptly by several orders of magnitudes through the formation of temporary conductive paths in each cell. A repeated injection of currents into the same cell, results in an almost identical effect in resistance drop for a single cell. However, due to the small physical variations which occur during manufacturing, the cells are significantly different from each other, in such a way that a group of cells can be used as a basis for PUF authentication.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: January 10, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF NORTHERN ARIZONA UNIVERSITY
    Inventors: Bertrand Francis Cambou, Raul Chipana Quispe, Bilal Babib
  • Publication number: 20200169423
    Abstract: The generation of “fingerprints”, also called challenge-response pairs (CRPs) of Physically Unclonable Functions (PUFs), can often stress electronic components, leaving behind traces that can be exploited by crypto-analysts. A non-intrusive method to generate CRPs based on Resistive RAMs may instead be used, which does not disturb the memory cells. The injection of small electric currents (magnitude of nanoAmperes) in each cell causes the resistance of each cell to drop abruptly by several orders of magnitudes through the formation of temporary conductive paths in each cell. A repeated injection of currents into the same cell, results in an almost identical effect in resistance drop for a single cell. However, due to the small physical variations which occur during manufacturing, the cells are significantly different from each other, in such a way that a group of cells can be used as a basis for PUF authentication.
    Type: Application
    Filed: July 20, 2018
    Publication date: May 28, 2020
    Inventors: Bertrand Francis Cambou, Raul Chipana Quispe, Bilal Babib