Patents by Inventor Raul E. Acosta

Raul E. Acosta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6762088
    Abstract: Inductor losses to a semiconducting substrate are eliminated in an IC structure by etching a well into the substrate down to the insulating layer coating the substrate and fabricating a grounded Faraday shield in the shape of elongated segments in the bottom of the well. The well lies directly below the inductor and is optionally filled with cured low-k organic dielectric or air.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: July 13, 2004
    Assignee: International Business Machines Corporation
    Inventors: Raul E. Acosta, Jennifer L. Lund, Robert A. Groves, Joanna Rosner, Steven A. Cordes, Melanie L. Carasso
  • Patent number: 6720230
    Abstract: A means for fabrication of solenoidal inductors integrated in a semiconductor chip is provided. The solenoidal coil is partially embedded in a deep well etched into the chip substrate. The non-embedded part of the coil is fabricated as part of the BEOL metallization layers. This allows for a large cross-sectional area of the solenoid turns, thus reducing the turn-to-turn capacitive coupling. Because the solenoidal coils of this invention have a large diameter cross-section, the coil can be made with a large inductance value and yet occupy a small area of the chip. The fabrication process includes etching of a deep cavity in the substrate after all the FEOL steps are completed; lining said cavity with a dielectric followed by fabrication of the part of the coil that will be embedded by deposition of a conductive material metal through a mask; deposition of dielectric and planarization of same by CMP.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: April 13, 2004
    Assignee: International Business Machines Corporation
    Inventors: Raul E. Acosta, Melanie L. Carasso, Steven A. Cordes, Robert A. Groves, Jennifer L. Lund, Joanna Rosner
  • Patent number: 6639488
    Abstract: Disclosed is a capacitive electrostatic MEMS RF switch comprised of a lower electrode that acts as both a transmission line and as an actuation electrode. Also, there is an array of one or more fixed beams above the lower electrode that is connected to ground. The lower electrode transmits the RF signal when the top beam or beams are up and when the upper beams are actuated and bent down, the transmission line is shunted to ground ending the RF transmission. A high dielectric constant material is used in the capacitive portion of the switch to achieve a high capacitance per unit area thus reducing the required chip area and enhancing the insertion loss characteristics in the non-actuated state. A gap between beam and lower electrode of less than 1 &mgr;m is incorporated in order to minimize the electrostatic potential (pull-in voltage) required to actuate the switch.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: October 28, 2003
    Assignee: IBM Corporation
    Inventors: Hariklia Deligianni, Robert Groves, Christopher Jahnes, Jennifer L. Lund, Panayotis Andricacos, John Cotte, L. Paivikki Buchwalter, David Seeger, Raul E. Acosta
  • Publication number: 20030096435
    Abstract: Inductor losses to a semiconducting substrate are eliminated in an IC structure by etching a well into the substrate down to the insulating layer coating the substrate and fabricating a grounded Faraday shield in the shape of elongated segments in the bottom of the well. The well lies directly below the inductor and is optionally filled with cured low-k organic dielectric or air.
    Type: Application
    Filed: January 3, 2003
    Publication date: May 22, 2003
    Inventors: Raul E. Acosta, Jennifer L. Lund, Robert A. Groves, Joanna Rosner, Steven A. Cordes, Melanie L. Carasso
  • Patent number: 6534843
    Abstract: Inductor losses to a semiconducting substrate are eliminated in an IC structure by etching a well into the substrate down to the insulating layer coating the substrate and fabricating a grounded Faraday shield in the shape of elongated segments in the bottom of the well. The well lies directly below the inductor and is optionally filled with cured low-k organic dielectric or air.
    Type: Grant
    Filed: February 10, 2001
    Date of Patent: March 18, 2003
    Assignee: International Business Machines Corporation
    Inventors: Raul E. Acosta, Jennifer L. Lund, Robert A. Groves, Joanna Rosner, Steven A. Cordes, Melanie L. Carasso
  • Publication number: 20030048149
    Abstract: Disclosed is a capacitive electrostatic MEMS RF switch comprised of a lower electrode that acts as both a transmission line and as an actuation electrode. Also, there is an array of one or more fixed beams above the lower electrode that is connected to ground. The lower electrode transmits the RF signal when the top beam or beams are up and when the upper beams are actuated and bent down, the transmission line is shunted to ground ending the RF transmission. A high dielectric constant material is used in the capacitive portion of the switch to achieve a high capacitance per unit area thus reducing the required chip area and enhancing the insertion loss characteristics in the non-actuated state. A gap between beam and lower electrode of less than 1 &mgr;m is incorporated in order to minimize the electrostatic potential (pull-in voltage) required to actuate the switch.
    Type: Application
    Filed: September 7, 2001
    Publication date: March 13, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Robert Groves, Christopher Jahnes, Jennifer L. Lund, Panayotis Andricacos, John Cotte, L. Paivikki Buchwalter, David Seeger, Raul E. Acosta
  • Publication number: 20030011041
    Abstract: A means for fabrication of solenoidal inductors integrated in a semiconductor chip is provided. The solenoidal coil is partially embedded in a deep well etched into the chip substrate. The non-embedded part of the coil is fabricated as part of the BEOL metallization layers. This allows for a large cross-sectional area of the solenoid turns, thus reducing the turn-to-turn capacitive coupling. Because the solenoidal coils of this invention have a large diameter cross-section, the coil can be made with a large inductance value and yet occupy a small area of the chip. The fabrication process includes etching of a deep cavity in the substrate after all the FEOL steps are completed; lining said cavity with a dielectric followed by fabrication of the part of the coil that will be embedded by deposition of a conductive material metal through a mask; deposition of dielectric and planarization of same by CMP.
    Type: Application
    Filed: September 10, 2002
    Publication date: January 16, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raul E. Acosta, Melanie L. Carasso, Steven A. Cordes, Robert A. Groves, Jennifer L. Lund, Joanna Rosner
  • Patent number: 6492708
    Abstract: A means for fabrication of solenoidal inductors integrated in a semiconductor chip is provided. The solenoidal coil is partially embedded in a deep well etched into the chip substrate. The non-embedded part of the coil is fabricated as part of the BEOL metallization layers. This allows for a large cross-sectional area of the solenoid turns, thus reducing the turn-to-turn capacitive coupling. Because the solenoidal coils of this invention have a large diameter cross-section, the coil can be made with a large inductance value and yet occupy a small area of the chip. The fabrication process includes etching of a deep cavity in the substrate after all the FEOL steps are completed; lining said cavity with a dielectric followed by fabrication of the part of the coil that will be embedded by deposition of a conductive material metal through a mask; deposition of dielectric and planarization of same by CMP.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: December 10, 2002
    Assignee: International Business Machines Corporation
    Inventors: Raul E. Acosta, Melanie L. Carasso, Steven A. Cordes, Robert A. Groves, Jennifer L. Lund, Joanna Rosner
  • Publication number: 20020130386
    Abstract: A means for fabrication of solenoidal inductors integrated in a semiconductor chip is provided. The solenoidal coil is partially embedded in a deep well etched into the chip substrate. The non-embedded part of the coil is fabricated as part of the BEOL metallization layers. This allows for a large cross-sectional area of the solenoid turns, thus reducing the turn-to-turn capacitive coupling. Because the solenoidal coils of this invention have a large diameter cross-section, the coil can be made with a large inductance value and yet occupy a small area of the chip. The fabrication process includes etching of a deep cavity in the substrate after all the FEOL steps are completed; lining said cavity with a dielectric followed by fabrication of the part of the coil that will be embedded by deposition of a conductive material metal through a mask; deposition of dielectric and planarization of same by CMP.
    Type: Application
    Filed: March 14, 2001
    Publication date: September 19, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raul E. Acosta, Melanie L. Carasso, Steven A. Cordes, Robert A. Groves, Jennifer L. Lund, Joanna Rosner
  • Publication number: 20020109204
    Abstract: Inductor losses to a semiconducting substrate are eliminated in an IC structure by etching a well into the substrate down to the insulating layer coating the substrate and fabricating a grounded Faraday shield in the shape of elongated segments in the bottom of the well. The well lies directly below the inductor and is optionally filled with cured low-k organic dielectric or air.
    Type: Application
    Filed: February 10, 2001
    Publication date: August 15, 2002
    Applicant: International Business Machines Corporation
    Inventors: Raul E. Acosta, Jennifer L. Lund, Robert A. Groves, Joanna Rosner, Steven A. Cordes, Melanie L. Carasso
  • Patent number: 5958631
    Abstract: A universal mask for use in making Integrated Circuits. The individual size masks are produced on a wafer having standardized, large size membrane area. A combined X-ray blocking and membrane stiffening layer is applied on at least one side of the wafer. This stiffening/blocking layer includes an X-ray transparent region having a size commensurate with the desired exposure field and aligned therewith.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: September 28, 1999
    Assignee: International Business Machines Corporation
    Inventors: Raul E. Acosta, Juan R. Maldonado
  • Patent number: 5793836
    Abstract: An X-ray mask pellicle is capable of protecting the X-ray mask from contaminants and the wafer from contact with the X-ray absorber material of the mask. The X-ray mask pellicle is sufficiently thin to allow X-ray exposure at the required mask to wafer gaps yet is sufficiently durable, replaceable, tough and X-ray resistant to be used in X-ray lithography. A thin (organic or inorganic) X-ray mask pellicle to be placed covering the X-ray mask pattern area is fabricated as a thin film and attached to a support ring. A selected area of the pellicle film, tailored to cover the absorber pattern in the X-ray mask, is etched to decrease its thickness to below 2 .mu.m. If the thin film of the pellicle is not itself conductive, a thin conductive film may be coated on both sides. In an alternative embodiment, the separation between the pellicle and the X-ray mask can be achieved by forming the mask with a stepped profile.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: August 11, 1998
    Assignees: International Business Machines Corporation, Lockheed Martin Corporation
    Inventors: Juan R. Maldonado, Raul E. Acosta, Marie Angelopoulos, Fuad E. Doany, Chandrasekhar Narayan, Andrew T. S. Pomerene, Jane M. Shaw, Kurt R. Kimmel
  • Patent number: 4717591
    Abstract: This invention relates to the prevention of mechanical and electrical failures in structures that are heat-treated, and more particularly relates to the use of coating layers containing Co and P on corrosible materials such as Cu. The invention has significant utility in the protection of Cu current-carrying lines in electronic structures that comprise multi layers that are subjected to heat treatments that would normally adversely affect the Cu lines. The CoP coating layer also acts to prevent interdiffusion between Cu and contact metals, such as Au.
    Type: Grant
    Filed: March 6, 1986
    Date of Patent: January 5, 1988
    Assignee: International Business Machines Corporation
    Inventors: Raul E. Acosta, Wilma J. Horkans, Ruby Mukherjee, Judith D. Olsen
  • Patent number: 4479980
    Abstract: A plating rate monitor includes a Wheatstone bridge, one branch of which is a monitoring resistor formed on a printed circuit board located in the same environment as an object being plated. The resistor undergoes plating at the same rate as the object. Each time the bridge becomes balanced, another resistor branch of the bridge, which is variable, is incremented by a preselected value to upset the balance. As the monitoring resistor in the plating environment undergoes plating, a change in its resistance causes the bridge to become balanced once again and the time interval for achieving this balance, for a calculated plating thickness change of the monitoring resistor, determines the plating rate.
    Type: Grant
    Filed: December 16, 1983
    Date of Patent: October 30, 1984
    Assignee: International Business Machines Corporation
    Inventors: Raul E. Acosta, Edward J. Yarmchuk