Patents by Inventor Ravi K. Nalla

Ravi K. Nalla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8508037
    Abstract: A structure includes a hybrid substrate for supporting a semiconductive device that includes a bumpless build-up layer in which the semiconductive device is embedded and a laminated-core structure. The bumpless build-up layer and the laminated-core structure are rendered an integral apparatus by a reinforcement plating that connects to a plated through hole in the laminated-core structure and to a subsequent bond pad of the bumpless build-up layer structure.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: August 13, 2013
    Assignee: Intel Corporation
    Inventors: Mathew J. Manusharow, Mark S. Hlad, Ravi K. Nalla
  • Patent number: 8507324
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include forming a cavity in a carrier material, attaching a die in the cavity, wherein a backside of the die comprises a metal filled DBF, forming a dielectric material adjacent the die and on a bottom side of the carrier material, forming a coreless substrate by building up layers on the dielectric material, and removing the carrier material from the coreless substrate.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 13, 2013
    Assignee: Intel Corporation
    Inventors: Ravi K Nalla, Drew W Delaney
  • Publication number: 20130119544
    Abstract: A microelectronic package includes a substrate (110), a die (120) embedded within the substrate, the die having a front side (121) and a back side (122) and a through-silicon-via (123) therein, build-up layers (130) built up over the front side of the die, and a power plane (140) in physical contact with the back side of the die. In another embodiment, the microelectronic package comprises a substrate (210), a first die (220) and a second die (260) embedded in the substrate and having a front side (221, 261) and a back side (222, 262) and a through-silicon-via (223, 263) therein, build-up layers (230) over the front sides of the first and second dies, and an electrically conductive structure (240) in physical contact with the back sides of the first and second dies.
    Type: Application
    Filed: January 8, 2013
    Publication date: May 16, 2013
    Inventors: Ravi K. Nalla, Mathew J. Manusharow, Drew W. Delaney
  • Patent number: 8431438
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, forming dielectric material surrounding the die, forming buildup layers in the dielectric material to form a coreless bumpless buildup package structure, and patterning the carrier material to form microchannel structures on the package structure.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: April 30, 2013
    Assignee: Intel Corporation
    Inventors: Ravi K Nalla, Mathew J Manusharow
  • Publication number: 20130052776
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include forming a cavity in a carrier material, attaching a die in the cavity, wherein a backside of the die comprises a metal filled DBF, forming a dielectric material adjacent the die and on a bottom side of the carrier material, forming a coreless substrate by building up layers on the dielectric material, and removing the carrier material from the coreless substrate.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 28, 2013
    Inventors: Ravi K. Nalla, Drew W. Delaney
  • Publication number: 20130023088
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 24, 2013
    Inventors: Ravi K. Nalla, Mathew Manusharow, Pramod Malatkar
  • Patent number: 8319318
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include forming a cavity in a carrier material, attaching a die in the cavity, wherein a backside of the die comprises a metal filled DBF, forming a dielectric material adjacent the die and on a bottom side of the carrier material, forming a coreless substrate by building up layers on the dielectric material, and removing the carrier material from the coreless substrate.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: November 27, 2012
    Assignee: Intel Corporation
    Inventors: Ravi K Nalla, Drew Delaney
  • Patent number: 8304913
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 6, 2012
    Assignee: Intel Corporation
    Inventors: Ravi K Nalla, Pramod Malatkar, Mathew J Manusharow
  • Publication number: 20120139095
    Abstract: A low-profile microelectronic package includes a die (110) (having a first surface (111) and a second surface (112)) and a package substrate (120). The substrate includes an electrically insulating layer (121) that forms a first side (126) of the substrate, an electrically conductive layer (122) connected to the die, and a protective layer (123) over the conductive layer that forms a second side (127) of the substrate. The first surface of the die is located at the first side of the substrate. The insulating layer has a plurality of pads (130) formed therein. The package further includes an array of interconnect structures (140) located at the first side of the substrate. Each interconnect structure in the array of interconnect structures has a first end (141) and a second end (142), and the first end is connected to one of the pads.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 7, 2012
    Inventors: Mathew J. Manusharow, Ravi K. Nalla
  • Publication number: 20120139116
    Abstract: A structure includes a hybrid substrate for supporting a semiconductive device that includes a bumpless build-up layer in which the semiconductive device is embedded and a laminated-core structure. The bumpless build-up layer and the laminated-core structure are rendered an integral apparatus by a reinforcement plating that connects to a plated through hole in the laminated-core structure and to a subsequent bond pad of the bumpless build-up layer structure.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Inventors: Mathew J. Manusharow, Mark S. Hlad, Ravi K. Nalla
  • Patent number: 8183692
    Abstract: A structure that may be used in substrate solder bumping comprises a substrate (110), a solder resist layer (120) disposed over the substrate, a plurality of solder resist openings (121) in a surface (122) of the solder resist layer, a conformal barrier layer (130) having a first portion (131) over the surface of the solder resist layer and a second portion (132) in the solder resist openings, a mask layer (140) over the first portion of the conformal barrier layer, and a solder material (150) in the solder resist openings over the metal layer. The conformal barrier layer acts as a barrier against interaction between the solder resist layer and the mask layer during solder reflow.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 22, 2012
    Assignee: Intel Corporation
    Inventors: Ravi K. Nalla, Christine H. Tsau, Mark S. Hlad
  • Publication number: 20120074581
    Abstract: An apparatus includes a coreless substrate with a through-silicon via (TSV) embedded die that is integral to the coreless substrate. The apparatus includes a subsequent die that is coupled to the TSV die and that is disposed above the coreless substrate.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: John S. Guzek, Ravi K. Nalla, Javier Soto Gonzalez, Drew Delaney, Suresh Pothukuchi, Mohit Mamodia, Edward Zarbock, Johanna M. Swan
  • Publication number: 20120074580
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Ravi K. Nalla, Mathew J. Manusharow, Pramod Malatkar
  • Publication number: 20110316140
    Abstract: A microelectronic package includes a substrate (110), a die (120) embedded within the substrate, the die having a front side (121) and a back side (122) and a through-silicon-via (123) therein, build-up layers (130) built up over the front side of the die, and a power plane (140) in physical contact with the back side of the die. In another embodiment, the microelectronic package comprises a substrate (210), a first die (220) and a second die (260) embedded in the substrate and having a front side (221, 261) and a back side (222, 262) and a through-silicon-via (223, 263) therein, build-up layers (230) over the front sides of the first and second dies, and an electrically conductive structure (240) in physical contact with the back sides of the first and second dies.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Inventors: Ravi K. Nalla, Mathew J. Manusharow, Drew Delaney
  • Publication number: 20110254124
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Inventors: Ravi K. Nalla, John Guzek, Javier Soto Gonzalez, Drew Delaney, Hamid Azimi
  • Publication number: 20110241186
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include forming a cavity in a carrier material, attaching a die in the cavity, wherein a backside of the die comprises a metal filled DBF, forming a dielectric material adjacent the die and on a bottom side of the carrier material, forming a coreless substrate by building up layers on the dielectric material, and removing the carrier material from the coreless substrate.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Ravi K. Nalla, Drew Delaney
  • Publication number: 20110241195
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, forming dielectric material surrounding the die, forming buildup layers in the dielectric material to form a coreless bumpless buildup package structure, and patterning the carrier material to form microchannel structures on the package structure.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Ravi K. Nalla, Mathew J. Manusharow
  • Publication number: 20110215464
    Abstract: Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
    Type: Application
    Filed: December 29, 2009
    Publication date: September 8, 2011
    Inventors: John Stephen Guzek, Javier Soto Gonzalez, Nicholas R. Watts, Ravi K. Nalla
  • Publication number: 20110108999
    Abstract: A microelectronic package comprises a die (210) having attached thereto a first plurality of electrically conductive pads (211). The microelectronic package further comprises a first layer (220) and a second layer (130). The first layer has a first plurality of electrically conductive vias (121) electrically connected to one of the first plurality of electrically conductive pads. The second layer comprises a second plurality of electrically conductive pads (131) located around a perimeter (135) of the second layer and a plurality of electrically conductive traces (132) electrically connected to one of the first plurality of electrically conductive vias and to one of the second plurality of electrically conductive pads. The microelectronic package also comprises a plurality of wirebonds (240), each one of which is electrically connected to one of the second plurality of electrically conductive pads.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Inventors: Ravi K. Nalla, Juan A. Maez, Mathew J. Manusharow
  • Publication number: 20100276185
    Abstract: A structure that may be used in substrate solder bumping comprises a substrate (110), a solder resist layer (120) disposed over the substrate, a plurality of solder resist openings (121) in a surface (122) of the solder resist layer, a conformal barrier layer (130) having a first portion (131) over the surface of the solder resist layer and a second portion (132) in the solder resist openings, a mask layer (140) over the first portion of the conformal barrier layer, and a solder material (150) in the solder resist openings over the metal layer. The conformal barrier layer acts as a barrier against interaction between the solder resist layer and the mask layer during solder reflow.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 4, 2010
    Inventors: Ravi K. Nalla, Christine H. Tsau, Mark S. Hlad