Patents by Inventor Ravi K. Sharma

Ravi K. Sharma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190188819
    Abstract: There are many advantages to implementing a watermark-based system using dedicated hardware, rather than using software executing on a general purpose processor. These include higher speed and lower power consumption. However, hardware implementations incur substantial design and development costs. Moreover, because each watermarking application has its own design constraints and parameters, it has not been cost-effective to develop a hardware chip design for each, since such chips would typically not be manufactured in volumes sufficient to bring per-unit costs down to an acceptable level. The present technology provides various techniques for making watermarking hardware adaptable, so that a single chip can serve multiple diverse watermark applications. By so-doing, the advantages of hardware implementation are made available where it was formerly cost-prohibitive, thereby enhancing operation of a great variety of watermark-based systems.
    Type: Application
    Filed: December 3, 2018
    Publication date: June 20, 2019
    Inventors: Jacob L. Boles, Ravi K. Sharma, John D. Lord
  • Publication number: 20190171856
    Abstract: The parameters of an optical code are optimized to achieve improved signal robustness, reliability, capacity and/or visual quality. An optimization program can determine spatial density, dot distance, dot size and signal component priority to optimize robustness. An optical code generator employs these parameters to produce an optical code at the desired spatial density and robustness. The optical code is merged into a host image, such as imagery, text and graphics of a package or label, or it may be printed by itself, e.g., on an otherwise blank label or carton. A great number of other features and arrangements are also detailed.
    Type: Application
    Filed: June 7, 2018
    Publication date: June 6, 2019
    Inventors: Ravi K. Sharma, Tomas Denemark, Brett A. Bradley, Geoffrey B. Rhoads, Eoin C. Sinclair, Vojtech Holub, Hugh L. Brunk, Trent J. Brundage, John F. Stach, John D. Lord, Joel R. Meyer
  • Publication number: 20190139176
    Abstract: Artwork carrying machine readable data is generated by editing artwork according to a data signal or transforming the data signal into artwork. The machine-readable data signal is generated from a digital payload and converted into an image tile. Artwork is edited according to the image tile by moving graphic elements, adapting intersections of lines, or altering line density, among other techniques. Artwork is generated from the data signal by skeletonizing it and applying morphological operators to a skeletal representation, such as a medial axis transform. Artistic effects are introduced by filtering the data signal with directional blurring or shape filters.
    Type: Application
    Filed: September 12, 2018
    Publication date: May 9, 2019
    Inventors: John F. Stach, Ravi K. Sharma, Christopher A. Ambiel, Ajith M. Kamath
  • Patent number: 10282470
    Abstract: This disclosure describes a distributed reader architecture for a mobile computing device such as cellular telephone handset.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: May 7, 2019
    Assignee: Digimarc Corporation
    Inventors: Ravi K. Sharma, Tony F. Rodriguez
  • Patent number: 10254383
    Abstract: Mobile device positioning employs various forms of audio signal structures and detection methodologies. In one method, detection of an audio signal from a first source enables construction of a signal to facilitate detection of an audio signal from another source. Signals detected from these sources enable positioning of the mobile device receiving those signals. Another method forms audio signals transmitted from audio sources so that they have parts that add constructively and parts that differentiate the sources to enable positioning. Another audio signal based positioning method adaptively switches among positioning methods so that positioning remains operative as a mobile device moves toward and away from the sources. Another method tracks positioning history, evaluates it for errors and performs error mitigation to improve accuracy. Various other positioning technologies are detailed as well.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 9, 2019
    Assignee: Digimarc Corporation
    Inventors: Brett A. Bradley, Ravi K. Sharma, Shankar Thagadur Shivappa, John D. Lord
  • Patent number: 10236006
    Abstract: Pre-processing modules are configured to compensate for time and pitch scaling and shifting and provide compensated audio frames to a watermark detector. Audio frames are adjusted for time stretching and shrinking and for pitch shifting. Detection metrics are evaluated to identify candidates to a watermark detector. Various schemes are also detailed for tracking modifications made to audio stems mixed into audio tracks, and for accessing a history of modifications for facilitating identification of audio stems and audio tracks comprised of stems. Various approaches address interference from audio overlays added to channels of audio after embedding. One approach applies informed embedding based on phase differences between corresponding components of the channels. A detector extracts the watermark payload effectively from either additive or subtractive combination of the channels because the informed embedding ensures that the watermark survives both types of processing.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: March 19, 2019
    Assignee: Digimarc Corporation
    Inventors: Aparna R. Gurijala, Brett A. Bradley, Ravi K. Sharma
  • Patent number: 10192560
    Abstract: Spectral encoding methods are more robust when used with improved weak signal detection and synchronizations methods. Further robustness gains are achieved by using informed embedding, error correction and embedding protocols that enable signal to noise enhancements by folding and pre-filtering the received signal.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 29, 2019
    Assignee: Digimarc Corporation
    Inventors: Ravi K. Sharma, Adnan M. Alattar
  • Patent number: 10176545
    Abstract: The present disclosures relates generally to digital watermarking and data hiding.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: January 8, 2019
    Assignee: Digimarc Corporation
    Inventors: Alastair M. Reed, Ravi K. Sharma
  • Publication number: 20180374183
    Abstract: The present invention relate generally to signal encoding and decoding.
    Type: Application
    Filed: March 23, 2018
    Publication date: December 27, 2018
    Inventors: Alastair M. Reed, Ravi K. Sharma
  • Publication number: 20180373959
    Abstract: Methods and arrangements involving portable user devices such smartphones and wearable electronic devices are disclosed, as well as other devices and sensors distributed within an ambient environment. Some arrangements enable a user to perform an object recognition process in a computationally- and time-efficient manner. Other arrangements enable users and other entities to, either individually or cooperatively, register or enroll physical objects into one or more object registries on which an object recognition process can be performed. Still other arrangements enable users and other entities to, either individually or cooperatively, associate registered or enrolled objects with one or more items of metadata. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 27, 2018
    Inventors: Geoffrey B. Rhoads, Yang Bai, Tony F. Rodriguez, Eliot Rogers, Ravi K. Sharma, John D. Lord, Scott Long, Brian T. MacIntosh, Kurt M. Eaton
  • Publication number: 20180349491
    Abstract: This disclosure describes a distributed reader architecture for a mobile computing device such as cellular telephone handset.
    Type: Application
    Filed: December 8, 2017
    Publication date: December 6, 2018
    Inventors: Ravi K. Sharma, Tony F. Rodriguez
  • Patent number: 10147156
    Abstract: There are many advantages to implementing a watermark-based system using dedicated hardware, rather than using software executing on a general purpose processor. These include higher speed and lower power consumption. However, hardware implementations incur substantial design and development costs. Moreover, because each watermarking application has its own design constraints and parameters, it has not been cost-effective to develop a hardware chip design for each, since such chips would typically not be manufactured in volumes sufficient to bring per-unit costs down to an acceptable level. The present technology provides various techniques for making watermarking hardware adaptable, so that a single chip can serve multiple diverse watermark applications. By so-doing, the advantages of hardware implementation are made available where it was formerly cost-prohibitive, thereby enhancing operation of a great variety of watermark-based systems.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: December 4, 2018
    Assignee: Digimarc Corporation
    Inventors: Jacob L. Boles, Ravi K. Sharma, John D. Lord
  • Publication number: 20180338068
    Abstract: The disclosure relates to digital watermarking, steganography, and specifically to message coding protocols used in conjunction with digital watermarking and steganographic encoding/decoding and payload interpretation methods. One claim recites a method for interpreting a data structure having fixed and variable message portions, the method comprising: processing the fixed message portion to determine a version of the variable message portion; decoding the entire payload field of the variable message portion according to the determined version; and interpreting only a portion of the decoded payload field according to the determined version. Of course, other features and claims are provided too.
    Type: Application
    Filed: November 27, 2017
    Publication date: November 22, 2018
    Inventors: Matthew M. Weaver, Ravi K. Sharma
  • Publication number: 20180330464
    Abstract: Signal processing devices and methods estimate a geometric transform of an image signal. From a seed set of transform candidates, a direct least squares method applies a seed transform candidate to a reference signal and then measures correlation between the transformed reference signal and an image signal in which the reference signal is encoded. Geometric transform candidates encompass differential scale and shear, which are useful in approximating a perspective transform. For each candidate, update coordinates of reference signal features are identified in the image signal and provided as input to a least squares method to compute an update to the transform candidate. The method iterates so long as the update of the transform provides a better correlation. At the end of the process, the method identifies a geometric transform or set of top transforms based on a further analysis of correlation, as well as other results.
    Type: Application
    Filed: April 30, 2018
    Publication date: November 15, 2018
    Inventors: Ravi K. Sharma, John D. Lord, Robert G. Lyons, Osama M. Alattar, Jacob L. Boles
  • Patent number: 10129429
    Abstract: This disclosure describes novel methods for generating unique copies of content. One method combines the functions of the master copy and unique copy watermarks. In particular, the method generates a unique copy by varying the manner in which the master copy watermark is embedded in unique copies of a content item. In one embodiment, the master copy watermark is repeated within the content item and its location is varied in a unique pattern that comprises the unique copy watermark. The unique copy is generated by producing a copy in which master copy watermarks are embedded in a unique pattern. For instance in one embodiment, the locations of the master copy watermarks in the content item are represented as a vector of delta values in which each delta value corresponds to the distance between a corresponding instance of the master copy watermark, and a neighboring instance of the master copy watermark.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: November 13, 2018
    Assignee: Digimarc Corporation
    Inventors: Rajan Samtani, Joel R. Meyer, Ravi K. Sharma
  • Publication number: 20180308193
    Abstract: Signal processing devices and methods estimate transforms between signals using a least squares technique. From a seed set of transform candidates, a direct least squares method applies a seed transform candidate to a reference signal and then measures correlation between the transformed reference signal and a suspect signal. For each candidate, update coordinates of reference signal features are identified in the suspect signal and provided as input to a least squares method to compute an update to the transform candidate. The method iterates so long as the update of the transform provides a better correlation. At the end of the process, the method identifies a transform or set of top transforms based on a further analysis of correlation, as well as other results.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 25, 2018
    Inventors: Ravi K. Sharma, John D. Lord, Robert G. Lyons
  • Publication number: 20180246696
    Abstract: Methods and arrangements involving electronic devices, such as smartphones, tablet computers, wearable devices, etc., are disclosed. One arrangement involves a low-power processing technique for discerning cues from audio input. Another involves a technique for detecting audio activity based on the Kullback-Liebler divergence (KLD) (or a modified version thereof) of the audio input. Still other arrangements concern techniques for managing the manner in which policies are embodied on an electronic device. Others relate to distributed computing techniques. A great variety of other features are also detailed.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 30, 2018
    Inventors: Ravi K. Sharma, Shankar Thagadur Shivappa, Osama M. Alattar, Brett A. Bradley, Scott M. Long, Ajith M. Kamath, Vojtech Holub, Hugh L. Brunk, Robert G. Lyons, Aparna R. Gurijala
  • Patent number: 10043527
    Abstract: A method for generating a psychoacoustic model from an audio signal transforms a block of samples of an audio signal into a frequency spectrum comprising frequency components. From this frequency spectrum, it derives group masking energies. These group masking energies each correspond to a group of neighboring frequency components in the frequency spectrum. For a group of frequency components, the method allocates the group masking energy to the frequency components in the group in proportion to energy of the frequency components within the group to provide adapted mask energies for the frequency components within the group, the adapted mask energies providing masking thresholds for the psychoacoustic model of the audio signal.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: August 7, 2018
    Assignee: Digimarc Corporation
    Inventors: Aparna R. Gurijala, Shankar Thagadur Shivappa, Ravi K. Sharma, Brett A. Bradley
  • Publication number: 20180211673
    Abstract: Audio signal processing enhances audio watermark embedding and detecting processes. Audio signal processes include audio classification and adapting watermark embedding and detecting based on classification. Advances in audio watermark design include adaptive watermark signal structure data protocols, perceptual models, and insertion methods. Perceptual and robustness evaluation is integrated into audio watermark embedding to optimize audio quality relative the original signal, and to optimize robustness or data capacity. These methods are applied to audio segments in audio embedder and detector configurations to support real time operation. Feature extraction and matching are also used to adapt audio watermark embedding and detecting.
    Type: Application
    Filed: December 20, 2017
    Publication date: July 26, 2018
    Inventors: Ravi K. Sharma, Brett A. Bradley, Yang Bai, Shankar Thagadur Shivappa, Ajith Kamath, Aparna Gurijala, Tomas Filler, David A. Cushman
  • Patent number: 10026410
    Abstract: Audio signal processing enhances audio watermark embedding and detecting processes. Audio signal processes include audio classification and adapting watermark embedding and detecting based on classification. Advances in audio watermark design include adaptive watermark signal structure data protocols, perceptual models, and insertion methods. Perceptual and robustness evaluation is integrated into audio watermark embedding to optimize audio quality relative the original signal, and to optimize robustness or data capacity. These methods are applied to audio segments in audio embedder and detector configurations to support real time operation. Feature extraction and matching are also used to adapt audio watermark embedding and detecting.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: July 17, 2018
    Assignee: Digimarc Corporation
    Inventors: Aparna R. Gurijala, Yang Bai, Ravi K. Sharma, Brett A. Bradley