Patents by Inventor Ravi S. TUMMIDI

Ravi S. TUMMIDI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11762159
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: September 19, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Prakash B. Gothoskar, Vipulkumar K. Patel, Soha Namnabat, Ravi S. Tummidi
  • Publication number: 20230243718
    Abstract: Electrical test of optical components via metal-insulator-semiconductor capacitor structures is provided via a plurality of optical devices including a first material embedded in a second material, wherein each optical device is associated with a different thickness range of a plurality of thickness ranges for the first material; a first capacitance measurement point including the first material embedded in the second material; and a second capacitance measurement point including a region from which the first material has been replaced with the second material.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 3, 2023
    Inventors: Xunyuan ZHANG, Ravi S. TUMMIDI, Tony P. POLOUS, Mark A. WEBSTER
  • Patent number: 11693200
    Abstract: Embodiments herein describe using a double wafer bonding process to form a photonic device. In one embodiment, during the bonding process, an optical element (e.g., a high precision optical element) is optically coupled to an optical device in an active surface layer. In one example, the optical element comprises a nitride layer which can be patterned to form a nitride waveguide, passive optical multiplexer or demultiplexer, or an optical coupler.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: July 4, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Vipulkumar K. Patel, Ravi S. Tummidi, Mark A. Webster
  • Patent number: 11686648
    Abstract: Electrical test of optical components via metal-insulator-semiconductor capacitor structures is provided via a plurality of optical devices including a first material embedded in a second material, wherein each optical device is associated with a different thickness range of a plurality of thickness ranges for the first material; a first capacitance measurement point including the first material embedded in the second material; and a second capacitance measurement point including a region from which the first material has been replaced with the second material.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: June 27, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Xunyuan Zhang, Ravi S. Tummidi, Tony P. Polous, Mark A. Webster
  • Publication number: 20230119450
    Abstract: Fabrication-tolerant on-chip multiplexers and demultiplexers are provides via a lattice filter interleaver configured to receive an input signal including a plurality of individual signals and to produce a first interleaved signal with a first subset of the plurality of individual signals and a second interleaved signal with a second subset of the plurality of individual signals; a first Bragg interleaver configured to receive the first interleaved signal and produce a first output signal including a first individual signal of the plurality of individual signals and a second output signal including a second individual signal of the plurality of individual signals; and a second Bragg interleaver configured to receive the second interleaved signal and produce a third output signal including a third individual signal of the plurality of individual signals and a fourth output signal including a fourth individual signal of the plurality of individual signals.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 20, 2023
    Inventors: Yi Ho LEE, Tao LING, Ravi S. TUMMIDI, Mark A. WEBSTER, Prakash B. GOTHOSKAR
  • Publication number: 20230076009
    Abstract: Process margin relaxation is provided in relation to a compensated-for process via a first optical device, fabricated to satisfy an operational specification when a compensated-for process is within a first tolerance range; a second optical device, fabricated to satisfy the operational specification when the compensated-for process is within second tolerance range, different than the first tolerance range; a first optical switch connected to an input and configured to output an optical signal received from the input to one of the first optical device and the second optical device; and a second optical switch configured to combine outputs from the first optical device and the second optical device.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Inventors: Tao LING, Ravi S. TUMMIDI, Yi Ho LEE, Mark A. WEBSTER
  • Publication number: 20230022612
    Abstract: Electrical test of optical components via metal-insulator-semiconductor capacitor structures is provided via a plurality of optical devices including a first material embedded in a second material, wherein each optical device is associated with a different thickness range of a plurality of thickness ranges for the first material; a first capacitance measurement point including the first material embedded in the second material; and a second capacitance measurement point including a region from which the first material has been replaced with the second material.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 26, 2023
    Inventors: Xunyuan ZHANG, Ravi S. TUMMIDI, Tony P. POLOUS, Mark A. WEBSTER
  • Publication number: 20230015671
    Abstract: Embodiments herein describe using a double wafer bonding process to form a photonic device. In one embodiment, during the bonding process, an optical element (e.g., a high precision optical element) is optically coupled to an optical device in an active surface layer. In one example, the optical element comprises a nitride layer which can be patterned to form a nitride waveguide, passive optical multiplexer or demultiplexer, or an optical coupler.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 19, 2023
    Inventors: Vipulkumar K. PATEL, Ravi S. TUMMIDI, Mark A. WEBSTER
  • Patent number: 11523192
    Abstract: Process margin relaxation is provided in relation to a compensated-for process via a first optical device, fabricated to satisfy an operational specification when a compensated-for process is within a first tolerance range; a second optical device, fabricated to satisfy the operational specification when the compensated-for process is within second tolerance range, different than the first tolerance range; a first optical switch connected to an input and configured to output an optical signal received from the input to one of the first optical device and the second optical device; and a second optical switch configured to combine outputs from the first optical device and the second optical device.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: December 6, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Tao Ling, Ravi S. Tummidi, Yi Ho Lee, Mark A. Webster
  • Patent number: 11520106
    Abstract: An optical device is disclosed, including a phase delay, a first adiabatic coupler adapted to receive an input signal and adapted to be optically coupled to an input of the phase delay, and a second adiabatic coupler adapted to be optically coupled to an output of the phase delay. The second adiabatic coupler includes a first waveguide including a first portion optically coupled to the first output and including a first width, and a second waveguide including a second portion optically coupled to the second output and including a second width that is approximately equal to the first width.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: December 6, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Yi Ho Lee, Tao Ling, Ravi S. Tummidi, Mark A. Webster
  • Patent number: 11467420
    Abstract: Aspects described herein include an optical apparatus comprising an input port configured to receive an optical signal comprising a plurality of wavelengths, and a plurality of output ports. Each output port is configured to output a respective wavelength of the plurality of wavelengths. The optical apparatus further comprises a first plurality of two-mode Bragg gratings in a cascaded arrangement. Each grating of the first plurality of two-mode Bragg gratings is configured to reflect a respective wavelength of the plurality of wavelengths toward a respective output port of the plurality of output ports, and transmit any remaining wavelengths of the plurality of wavelengths.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: October 11, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Tao Ling, Yi Ho Lee, Ravi S. Tummidi, Mark A. Webster
  • Patent number: 11360268
    Abstract: Aspects described herein include a mode multiplexer comprising a first optical waveguide extending between a first port and a second port. A first input mode of an optical signal entering the first port is propagated through the first optical waveguide to the second port. The mode multiplexer further comprises a second optical waveguide configured to evanescently couple with a coupling section of the first optical waveguide. A second input mode of the optical signal entering the first port is propagated through the second optical waveguide to a third port. The first optical waveguide further defines a filtering section between the coupling section and the second port, the filtering section configured to filter the second input mode.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: June 14, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Tao Ling, Shiyi Chen, Ravi S. Tummidi
  • Patent number: 11249246
    Abstract: Aspects described herein include an optical apparatus comprising a multiple-stage arrangement of two-mode Bragg gratings comprising: at least a first Bragg grating of a first stage. The first Bragg grating is configured to transmit a first two wavelengths and to reflect a second two wavelengths of a received optical signal. The optical apparatus further comprises a second Bragg grating of a second stage. The second Bragg grating is configured to transmit one of the first two wavelengths and to reflect an other of the first two wavelengths. The optical apparatus further comprises a third Bragg grating of the second stage. The third Bragg grating is configured to transmit one of the second two wavelengths and to reflect an other of the second two wavelengths.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 15, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Tao Ling, Yi Ho Lee, Ravi S. Tummidi, Mark A. Webster
  • Publication number: 20210345022
    Abstract: Process margin relaxation is provided in relation to a compensated-for process via a first optical device, fabricated to satisfy an operational specification when a compensated-for process is within a first tolerance range; a second optical device, fabricated to satisfy the operational specification when the compensated-for process is within second tolerance range, different than the first tolerance range; a first optical switch connected to an input and configured to output an optical signal received from the input to one of the first optical device and the second optical device; and a second optical switch configured to combine outputs from the first optical device and the second optical device.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 4, 2021
    Inventors: Tao LING, Ravi S. TUMMIDI, Yi Ho LEE, Mark A. WEBSTER
  • Publication number: 20210286190
    Abstract: Aspects described herein include an optical apparatus comprising an input port configured to receive an optical signal comprising a plurality of wavelengths, and a plurality of output ports. Each output port is configured to output a respective wavelength of the plurality of wavelengths. The optical apparatus further comprises a first plurality of two-mode Bragg gratings in a cascaded arrangement. Each grating of the first plurality of two-mode Bragg gratings is configured to reflect a respective wavelength of the plurality of wavelengths toward a respective output port of the plurality of output ports, and transmit any remaining wavelengths of the plurality of wavelengths.
    Type: Application
    Filed: April 20, 2021
    Publication date: September 16, 2021
    Inventors: Tao LING, Yi Ho LEE, Ravi S. TUMMIDI, Mark A. WEBSTER
  • Publication number: 20210278615
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Application
    Filed: May 13, 2021
    Publication date: September 9, 2021
    Inventors: Prakash B. GOTHOSKAR, Vipulkumar K. PATEL, Soha NAMNABAT, Ravi S. TUMMIDI
  • Patent number: 11089391
    Abstract: Process margin relaxation is provided in relation to a compensated-for process via a first optical device, fabricated to satisfy an operational specification when a compensated-for process is within a first tolerance range; a second optical device, fabricated to satisfy the operational specification when the compensated-for process is within second tolerance range, different than the first tolerance range; a first optical switch connected to an input and configured to output an optical signal received from the input to one of the first optical device and the second optical device; and a second optical switch configured to combine outputs from the first optical device and the second optical device.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: August 10, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Tao Ling, Ravi S. Tummidi, Yi Ho Lee, Mark A. Webster
  • Patent number: 11067765
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: July 20, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Prakash B. Gothoskar, Vipulkumar K. Patel, Soha Namnabat, Ravi S. Tummidi
  • Publication number: 20210181419
    Abstract: An optical device is disclosed, including a phase delay, a first adiabatic coupler adapted to receive an input signal and adapted to be optically coupled to an input of the phase delay, and a second adiabatic coupler adapted to be optically coupled to an output of the phase delay. The second adiabatic coupler includes a first waveguide including a first portion optically coupled to the first output and including a first width, and a second waveguide including a second portion optically coupled to the second output and including a second width that is approximately equal to the first width.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Yi Ho LEE, Tao LING, Ravi S. TUMMIDI, Mark A. WEBSTER
  • Publication number: 20210157068
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Prakash B. GOTHOSKAR, Vipulkumar K. PATEL, Soha NAMNABAT, Ravi S. TUMMIDI