Patents by Inventor Ravi Saxena

Ravi Saxena has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210124115
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Application
    Filed: September 4, 2020
    Publication date: April 29, 2021
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Ravi SAXENA, Michael Tzu RU, Takashi Whitney ORIMOTO, Annette GROT, Mathieu FOQUET, Hou-Pu CHOU
  • Patent number: 10990311
    Abstract: A non-volatile storage apparatus (e.g., an SSD, embedded memory, memory card, etc.) comprises non-volatile memory (e.g., one or more memory dies) connected to a control circuit (e.g., controller, state machine, microcontroller, etc.). The non-volatile memory is configured to have multiple regions for storing different types of data using separate streams. The control circuit is configured to receive a request to write data to a logical address, automatically choose a stream (and corresponding destination region) by determining which of the multiple regions/streams has a sequence of logical addresses associated with previous writes that best fits the logical address for the received data, and store the received data in the chosen destination region of the non-volatile memory using the chosen stream.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: April 27, 2021
    Assignee: Western Digital Technologies, Inc.
    Inventors: Vishwas Saxena, Abhijit Rao, Ravi Kumar, Saifullah Nalatwad
  • Patent number: 10859497
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Annette Grot, Ravi Saxena, Paul Lundquist
  • Patent number: 10768362
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Patent number: 10724090
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: July 28, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena, Scott Edward Helgesen
  • Patent number: 10687206
    Abstract: In some examples, a system includes a storage to store a repository of user information, and a processor to receive, from a requester device, a request for a first information element relating to a user entity, and in response to a determination that the requester device supports a feature that enables the requester device to request multiple different information elements relating to the user entity in one request, send, in a response message that is responsive to the received request, the first information element and a second information element, the second information element not indicated as being requested by the received request.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: June 16, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Ravi Saxena
  • Publication number: 20200142127
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Application
    Filed: June 3, 2019
    Publication date: May 7, 2020
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Ravi SAXENA, Michael Tzu RU, Takashi Whitney ORIMOTO, Annette GROT, Mathieu FOQUET, Hou-Pu CHOU
  • Patent number: 10640825
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 5, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena, Scott Edward Helgesen
  • Patent number: 10626457
    Abstract: Arrays of integrated optical devices and their methods for production are provided. The devices include an integrated bandpass filter layer that comprises at least two multi-cavity filter elements with different central bandpass wavelengths. The device arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices provide for the efficient and reliable coupling of optical excitation energy from an optical source to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination. The device arrays are well suited for miniaturization and high throughput.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: April 21, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Annette Grot, Nicolaas Tack, Pilar Gonzalez, Bert Du Bois, Simone Severi
  • Publication number: 20200018703
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Application
    Filed: March 14, 2019
    Publication date: January 16, 2020
    Inventors: Annette GROT, Ravi SAXENA, Paul LUNDQUIST
  • Patent number: 10534795
    Abstract: Examples describe mechanisms for maintaining consistent subscriber data on geo-redundant subscriber databases. In an example, a request to perform an operation related to subscriber data may be received on a subscriber database, wherein the subscriber database may be a geo-redundant deployment of a separate subscriber database. The connectivity status of a synchronization link between the subscriber database and the separate subscriber database may be determined. In response to the determination that the connectivity status of the synchronization link between the subscriber database and the separate subscriber database is disconnected, the request to perform the operation related to the subscriber data on the subscriber database may be denied.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: January 14, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Ravi Saxena
  • Patent number: 10531272
    Abstract: A mechanism for consistent public land mobile network (PLMN) specific supplementary services across different PLMNs or different service areas/regions of a PLMN is provided. A visited PLMN in which a subscriber unit is receiving or is attempting to receive service may be identified. Home PLMN specific supplementary services provisioned for the subscriber unit may be mapped to visited PLMN specific supplementary service codes set forth in the visited PLMN. These visited PLMN specific supplementary service codes may be used to replace the home PLMN specific supplementary service codes and transmitted to the visited PLMN using outgoing Mobile Application Part messages.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: January 7, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Ravi Saxena, Srinivas Rangaraju
  • Publication number: 20190335313
    Abstract: A mechanism for consistent public land mobile network (PLMN) specific supplementary services across different PLMNs or different service areas/regions of a PLMN is provided. A visited PLMN in which a subscriber unit is receiving or is attempting to receive service may be identified. Home PLMN specific supplementary services provisioned for the subscriber unit may be mapped to visited PLMN specific supplementary service codes set forth in the visited PLMN. These visited PLMN specific supplementary service codes may be used to replace the home PLMN specific supplementary service codes and transmitted to the visited PLMN using outgoing Mobile Application Part messages.
    Type: Application
    Filed: April 26, 2018
    Publication date: October 31, 2019
    Inventors: Ravi Saxena, Srinivas Rangaraju
  • Publication number: 20190309361
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Application
    Filed: April 16, 2019
    Publication date: October 10, 2019
    Inventors: Nathaniel Joseph MCCAFFREY, Stephen TURNER, Ravi SAXENA, Scott Edward HELGESEN
  • Publication number: 20190239063
    Abstract: In some examples, a system includes a storage to store a repository of user information, and a processor to receive, from a requester device, a request for a first information element relating to a user entity, and in response to a determination that the requester device supports a feature that enables the requester device to request multiple different information elements relating to the user entity in one request, send, in a response message that is responsive to the received request, the first information element and a second information element, the second information element not indicated as being requested by the received request.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Inventor: Ravi Saxena
  • Patent number: 10310178
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: June 4, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Patent number: 10234393
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: March 19, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Annette Grot, Ravi Saxena, Paul Lundquist
  • Publication number: 20180239087
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 23, 2018
    Inventors: Ravi SAXENA, Michael Tzu RU, Takashi Whitney ORIMOTO, Annette GROT, Mathieu FOQUET, Hou-Pu CHOU
  • Publication number: 20180180548
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Application
    Filed: February 20, 2018
    Publication date: June 28, 2018
    Inventors: Annette GROT, Ravi SAXENA, Paul LUNDQUIST
  • Publication number: 20180155781
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Application
    Filed: October 17, 2017
    Publication date: June 7, 2018
    Inventors: Nathaniel Joseph MCCAFFREY, Stephen TURNER, Ravi SAXENA, JR., Scott Edward HELGESEN