Patents by Inventor Ravi Vig

Ravi Vig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210111284
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
  • Patent number: 10916665
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: February 9, 2021
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
  • Patent number: 10837800
    Abstract: Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. The magnetic field sensors employ both planar Hall effect elements and vertical Hall effect elements to generate two-state signals in two different signal paths with relative phases that are ninety degrees apart, the ninety degrees having sufficient margin to aid in detection of the direction of motion. Other magnetic field sensors use at least four vertical Hall effect elements to identify a speed of rotation and a direction of rotation of a moving ferromagnetic object.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: November 17, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, Paul A. David, Eric G. Shoemaker
  • Publication number: 20190157465
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.
    Type: Application
    Filed: January 21, 2019
    Publication date: May 23, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
  • Patent number: 10234513
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die supporting a magnetic field sensing element, a non-conductive mold material enclosing the die and a portion of the lead frame, a ferromagnetic mold material secured to the non-conductive mold material and a securing mechanism to securely engage the mold materials. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet. The ferromagnetic mold material may be tapered and includes a non-contiguous central region, as may be an aperture or may contain the non-conductive mold material or an overmold material. Further embodiments include die up, lead on chip, and flip-chip arrangements, wafer level techniques to form the concentrator or bias magnet, integrated components, such as capacitors, on the lead frame, and a bias magnet with one or more channels to facilitate overmolding.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: March 19, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul David, Marie-Adelaide Lo, Eric Burdette, Eric Shoemaker, Michael C. Doogue
  • Patent number: 10230006
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. An electromagnetic suppressor comprising a ferromagnetic material encloses a passive device spaced from the non-conductive mold material and coupled to a plurality of leads.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: March 12, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
  • Patent number: 10215590
    Abstract: A back-biased magnetic field sensor can have one or more vertical Hall effect elements arranged within a substrate region of a substrate, wherein magnetic fields are oriented substantially vertical to the substrate within the substrate region when a ferromagnetic object is not proximate. When the ferromagnetic object becomes proximate, the magnetic field sensor can sense at least the proximity, and, in some embodiments, can also localize a position of the ferromagnetic object relative to the magnetic field sensor.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 26, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Paul A. David, Ravi Vig
  • Publication number: 20190049527
    Abstract: A magnetic field sensor includes a lead frame, a passive component, semiconductor die supporting a magnetic field sensing element and attached to the lead frame, a non-conductive mold material enclosing the die and at least a portion of the lead frame, and a ferromagnetic mold material secured to a portion of the non-conductive mold material. The lead frame has a recessed region and the passive component is positioned in the recessed region. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 14, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul A. David, Marie-Adelaide Lo, Eric Burdette, Eric G. Shoemaker, Michael C. Doogue
  • Publication number: 20180224300
    Abstract: Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. The magnetic field sensors employ both planar Hall effect elements and vertical Hall effect elements to generate two-state signals in two different signal paths with relative phases that are ninety degrees apart, the ninety degrees having sufficient margin to aid in detection of the direction of motion. Other magnetic field sensors use at least four vertical Hall effect elements to identify a speed of rotation and a direction of rotation of a moving ferromagnetic object.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 9, 2018
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, Paul A. David, Eric G. Shoemaker
  • Patent number: 10041810
    Abstract: Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. The magnetic field sensors employ both planar Hall effect elements and vertical Hall effect elements to generate two-state signals in two different signal paths with relative phases that are ninety degrees apart, the ninety degrees having sufficient margin to aid in detection of the direction of motion. Other magnetic field sensors use at least four vertical Hall effect elements to identify a speed of rotation and a direction of rotation of a moving ferromagnetic object.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: August 7, 2018
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, Paul A. David, Eric G. Shoemaker
  • Patent number: 10012518
    Abstract: A back-biased magnetic field sensor uses one or more magnetic field sensing elements upon a substrate, each outside of a substrate region in which magnetic field lines are near perpendicular to the substrate and outside of which magnetic field lines are not to the substrate. The back-biased magnetic field sensor can sense an approaching and/or a retreating ferromagnetic object.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: July 3, 2018
    Assignee: Allegro MicroSystems, LLC
    Inventors: Paul A. David, Ravi Vig
  • Publication number: 20170356761
    Abstract: Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. The magnetic field sensors employ both planar Hall effect elements and vertical Hall effect elements to generate two-state signals in two different signal paths with relative phases that are ninety degrees apart, the ninety degrees having sufficient margin to aid in detection of the direction of motion. Other magnetic field sensors use at least four vertical Hall effect elements to identify a speed of rotation and a direction of rotation of a moving ferromagnetic object.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 14, 2017
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, Paul A. David, Eric G. Shoemaker
  • Publication number: 20170356762
    Abstract: A back-biased magnetic field sensor can have one or more vertical Hall effect elements arranged within a substrate region of a substrate, wherein magnetic fields are oriented substantially vertical to the substrate within the substrate region when a ferromagnetic object is not proximate. When the ferromagnetic object becomes proximate, the magnetic field sensor can sense at least the proximity, and, in some embodiments, can also localize a position of the ferromagnetic object relative to the magnetic field sensor.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 14, 2017
    Applicant: Allegro MicroSystems, LLC
    Inventors: Paul A. David, Ravi Vig
  • Publication number: 20170356759
    Abstract: A back-biased magnetic field sensor uses one or more magnetic field sensing elements upon a substrate, each outside of a substrate region in which magnetic field lines are near perpendicular to the substrate and outside of which magnetic field lines are not to the substrate. The back-biased magnetic field sensor can sense an approaching and/or a retreating ferromagnetic object.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 14, 2017
    Applicant: Allegro MicroSystems, LLC
    Inventors: Paul A. David, Ravi Vig
  • Patent number: 9812588
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: November 7, 2017
    Assignee: Allegro Microsystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul David, P. Karl Scheller, Andreas P. Friedrich
  • Publication number: 20170278981
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.
    Type: Application
    Filed: June 9, 2017
    Publication date: September 28, 2017
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
  • Patent number: 9666788
    Abstract: A magnetic field sensor includes a lead frame having a plurality of leads, at least two of which have a connection portion and a die attach portion. A semiconductor die is attached to the die attach portion of the at least two leads. The sensor further includes at least one wire bond coupled between the die and a first surface of the lead frame. The die is attached to a second, opposing surface of the lead frame in a lead on chip configuration. In some embodiments, at least one passive component is attached to the die attach portion of at least two leads.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 30, 2017
    Assignee: ALLEGRO MICROSYSTEMS, LLC
    Inventors: William P. Taylor, Paul David, Ravi Vig
  • Patent number: 9494660
    Abstract: A magnetic field sensor includes a lead frame having a plurality of leads, at least two of which have a connection portion and a die attach portion. A semiconductor die is attached to the die attach portion of the at least two leads. In some embodiments, at least one passive component is attached to the die attach portion of at least two leads.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 15, 2016
    Assignee: Allegro Microsystems, LLC
    Inventors: Paul David, William P. Taylor, P. Karl Scheller, Ravi Vig, Andreas P. Friedrich
  • Patent number: 9411025
    Abstract: A magnetic field sensor includes a lead frame having a plurality of leads, at least two of which have a connection portion and a die attach portion. A semiconductor die is attached to the die attach portion of the at least two leads and a separately formed ferromagnetic element, such as a magnet, is disposed adjacent to the lead frame.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: August 9, 2016
    Assignee: Allegro Microsystems, LLC
    Inventors: Paul David, Ravi Vig, William P. Taylor, Andreas P. Friedrich
  • Patent number: 9151771
    Abstract: An apparatus and a method provide an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object capable of rotating. A variety of signal formats of the output signal are described.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: October 6, 2015
    Assignee: Allegro Microsystems, LLC
    Inventors: Ravi Vig, P. Karl Scheller, Paul A. David