Patents by Inventor Ravi Vig
Ravi Vig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240222526Abstract: An integrated circuit package and method of fabrication are described. The integrated circuit package includes a lead frame having a first surface and a second opposing surface and a semiconductor die having a first, active surface in which circuitry is disposed and a second opposing surface attached to the first surface of the lead frame. A magnet attached to the second surface of the lead frame has a non-contiguous central region and at least one channel extending laterally from the central region. An overmold material forms an enclosure surrounding the magnet, semiconductor die, and a portion of the lead frame.Type: ApplicationFiled: March 13, 2024Publication date: July 4, 2024Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 11961920Abstract: An integrated circuit package and method of fabrication are described. The integrated circuit package includes a lead frame having a first surface and a second opposing surface and a semiconductor die having a first, active surface in which circuitry is disposed and a second opposing surface attached to the first surface of the lead frame. A magnet attached to the second surface of the lead frame has a non-contiguous central region and at least one channel extending laterally from the central region. An overmold material forms an enclosure surrounding the magnet, semiconductor die, and a portion of the lead frame.Type: GrantFiled: April 26, 2023Date of Patent: April 16, 2024Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 11828819Abstract: A magnetic field sensor includes a lead frame, a passive component, semiconductor die supporting a magnetic field sensing element and attached to the lead frame, a non-conductive mold material enclosing the die and at least a portion of the lead frame, and a ferromagnetic mold material secured to a portion of the non-conductive mold material. The lead frame has a recessed region and the passive component is positioned in the recessed region. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet.Type: GrantFiled: October 13, 2022Date of Patent: November 28, 2023Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul A. David, Marie-Adelaide Lo, Eric Burdette, Eric G. Shoemaker, Michael C. Doogue
-
Publication number: 20230261118Abstract: An integrated circuit package and method of fabrication are described. The integrated circuit package includes a lead frame having a first surface and a second opposing surface and a semiconductor die having a first, active surface in which circuitry is disposed and a second opposing surface attached to the first surface of the lead frame. A magnet attached to the second surface of the lead frame has a non-contiguous central region and at least one channel extending laterally from the central region. An overmold material forms an enclosure surrounding the magnet, semiconductor die, and a portion of the lead frame.Type: ApplicationFiled: April 26, 2023Publication date: August 17, 2023Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 11677032Abstract: A sensor includes a lead frame having a first surface, a second opposing surface, and a plurality of leads and a semiconductor die having a first surface attached to the first surface of the lead frame and a second, opposing surface. The sensor further includes a non-conductive mold material enclosing the die and at least a portion of the lead frame, a conductive coil secured to the non-conductive mold material, a mold material secured to the non-conductive mold material and enclosing the conductive coil, wherein the mold material has a central region and an element disposed in the central region of the mold material.Type: GrantFiled: June 14, 2022Date of Patent: June 13, 2023Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Publication number: 20230057390Abstract: A magnetic field sensor includes a lead frame, a passive component, semiconductor die supporting a magnetic field sensing element and attached to the lead frame, a non-conductive mold material enclosing the die and at least a portion of the lead frame, and a ferromagnetic mold material secured to a portion of the non-conductive mold material. The lead frame has a recessed region and the passive component is positioned in the recessed region. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet.Type: ApplicationFiled: October 13, 2022Publication date: February 23, 2023Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul A. David, Marie-Adelaide Lo, Eric Burdette, Eric G. Shoemaker, Michael C. Doogue
-
Publication number: 20220310853Abstract: A sensor includes a lead frame having a first surface, a second opposing surface, and a plurality of leads and a semiconductor die having a first surface attached to the first surface of the lead frame and a second, opposing surface. The sensor further includes a non-conductive mold material enclosing the die and at least a portion of the lead frame, a conductive coil secured to the non-conductive mold material, a mold material secured to the non-conductive mold material and enclosing the conductive coil, wherein the mold material has a central region and an element disposed in the central region of the mold material.Type: ApplicationFiled: June 14, 2022Publication date: September 29, 2022Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 11444209Abstract: A magnetic field sensor includes a lead frame, a semiconductor die, a conductive coil, a mandrel, and a non-conductive mold material. The lead frame has a first surface, a second opposing surface, at least one slot, and a plurality of leads. The semiconductor die has a first surface in which a magnetic field sensing element is disposed and a second opposing surface attached to the first surface of the lead frame. The conductive coil is secured to the second surface of the lead frame and configured to operate as a back bias magnet to provide a magnetic field used to detect movement of a target. The coil is would around the mandrel and the mandrel is comprised of a ferromagnetic material. The non-conductive mold material encloses the die, the conductive coil, the mandrel, and at least a portion of the lead frame.Type: GrantFiled: December 22, 2020Date of Patent: September 13, 2022Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Publication number: 20210111284Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.Type: ApplicationFiled: December 22, 2020Publication date: April 15, 2021Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 10916665Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.Type: GrantFiled: January 21, 2019Date of Patent: February 9, 2021Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 10837800Abstract: Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. The magnetic field sensors employ both planar Hall effect elements and vertical Hall effect elements to generate two-state signals in two different signal paths with relative phases that are ninety degrees apart, the ninety degrees having sufficient margin to aid in detection of the direction of motion. Other magnetic field sensors use at least four vertical Hall effect elements to identify a speed of rotation and a direction of rotation of a moving ferromagnetic object.Type: GrantFiled: April 4, 2018Date of Patent: November 17, 2020Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, Paul A. David, Eric G. Shoemaker
-
Publication number: 20190157465Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.Type: ApplicationFiled: January 21, 2019Publication date: May 23, 2019Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 10234513Abstract: A magnetic field sensor includes a lead frame, a semiconductor die supporting a magnetic field sensing element, a non-conductive mold material enclosing the die and a portion of the lead frame, a ferromagnetic mold material secured to the non-conductive mold material and a securing mechanism to securely engage the mold materials. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet. The ferromagnetic mold material may be tapered and includes a non-contiguous central region, as may be an aperture or may contain the non-conductive mold material or an overmold material. Further embodiments include die up, lead on chip, and flip-chip arrangements, wafer level techniques to form the concentrator or bias magnet, integrated components, such as capacitors, on the lead frame, and a bias magnet with one or more channels to facilitate overmolding.Type: GrantFiled: March 20, 2012Date of Patent: March 19, 2019Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul David, Marie-Adelaide Lo, Eric Burdette, Eric Shoemaker, Michael C. Doogue
-
Patent number: 10230006Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. An electromagnetic suppressor comprising a ferromagnetic material encloses a passive device spaced from the non-conductive mold material and coupled to a plurality of leads.Type: GrantFiled: June 9, 2017Date of Patent: March 12, 2019Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
-
Patent number: 10215590Abstract: A back-biased magnetic field sensor can have one or more vertical Hall effect elements arranged within a substrate region of a substrate, wherein magnetic fields are oriented substantially vertical to the substrate within the substrate region when a ferromagnetic object is not proximate. When the ferromagnetic object becomes proximate, the magnetic field sensor can sense at least the proximity, and, in some embodiments, can also localize a position of the ferromagnetic object relative to the magnetic field sensor.Type: GrantFiled: June 8, 2016Date of Patent: February 26, 2019Assignee: Allegro MicroSystems, LLCInventors: Paul A. David, Ravi Vig
-
Publication number: 20190049527Abstract: A magnetic field sensor includes a lead frame, a passive component, semiconductor die supporting a magnetic field sensing element and attached to the lead frame, a non-conductive mold material enclosing the die and at least a portion of the lead frame, and a ferromagnetic mold material secured to a portion of the non-conductive mold material. The lead frame has a recessed region and the passive component is positioned in the recessed region. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet.Type: ApplicationFiled: October 19, 2018Publication date: February 14, 2019Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul A. David, Marie-Adelaide Lo, Eric Burdette, Eric G. Shoemaker, Michael C. Doogue
-
Publication number: 20180224300Abstract: Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. The magnetic field sensors employ both planar Hall effect elements and vertical Hall effect elements to generate two-state signals in two different signal paths with relative phases that are ninety degrees apart, the ninety degrees having sufficient margin to aid in detection of the direction of motion. Other magnetic field sensors use at least four vertical Hall effect elements to identify a speed of rotation and a direction of rotation of a moving ferromagnetic object.Type: ApplicationFiled: April 4, 2018Publication date: August 9, 2018Applicant: Allegro MicroSystems, LLCInventors: Ravi Vig, Paul A. David, Eric G. Shoemaker
-
Patent number: 10041810Abstract: Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. The magnetic field sensors employ both planar Hall effect elements and vertical Hall effect elements to generate two-state signals in two different signal paths with relative phases that are ninety degrees apart, the ninety degrees having sufficient margin to aid in detection of the direction of motion. Other magnetic field sensors use at least four vertical Hall effect elements to identify a speed of rotation and a direction of rotation of a moving ferromagnetic object.Type: GrantFiled: June 8, 2016Date of Patent: August 7, 2018Assignee: Allegro MicroSystems, LLCInventors: Ravi Vig, Paul A. David, Eric G. Shoemaker
-
Patent number: 10012518Abstract: A back-biased magnetic field sensor uses one or more magnetic field sensing elements upon a substrate, each outside of a substrate region in which magnetic field lines are near perpendicular to the substrate and outside of which magnetic field lines are not to the substrate. The back-biased magnetic field sensor can sense an approaching and/or a retreating ferromagnetic object.Type: GrantFiled: June 8, 2016Date of Patent: July 3, 2018Assignee: Allegro MicroSystems, LLCInventors: Paul A. David, Ravi Vig
-
Publication number: 20170356759Abstract: A back-biased magnetic field sensor uses one or more magnetic field sensing elements upon a substrate, each outside of a substrate region in which magnetic field lines are near perpendicular to the substrate and outside of which magnetic field lines are not to the substrate. The back-biased magnetic field sensor can sense an approaching and/or a retreating ferromagnetic object.Type: ApplicationFiled: June 8, 2016Publication date: December 14, 2017Applicant: Allegro MicroSystems, LLCInventors: Paul A. David, Ravi Vig