Patents by Inventor Ravikumar Sanapala

Ravikumar Sanapala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10018571
    Abstract: A defect inspection system includes an inspection sub-system and a controller communicatively coupled to the detector. The inspection sub-system includes an illumination source configured to generate a beam of illumination, a set of illumination optics to direct the beam of illumination to a sample, and a detector configured to collect illumination emanating from the sample. The controller includes a memory device and one or more processors configured to execute program instructions. The controller is configured to determine one or more target patterns corresponding to one or more features on the sample, define one or more care areas on the sample based on the one or more target patterns and design data of the sample stored within the memory device of the controller, and identify one or more defects within the one or more care areas of the sample based on the illumination collected by the detector.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 10, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Vijayakumar Ramachandran, Ravikumar Sanapala, Vidyasagar Anantha, Philip Measor, Rajesh Manepalli, Jing Fang
  • Patent number: 9702827
    Abstract: Methods and systems for selecting one or more modes of an inspection subsystem or system for inspection of a specimen are provided. The systems described herein are configured to acquire output for all of the modes to be considered at a location of a known defect on the specimen by aligning output, which is generated at the location with a mode known to generate output in which patterned features on the specimen are resolved to a degree that allows the output to be aligned to design data, with the design data for the specimen to identify the location with substantially high accuracy and then without moving the field of view of the inspection subsystem or system from that location, acquiring the output for all other modes. All of the acquired output can then be used to select mode(s) for inspection of the specimen or another specimen of the same type.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: July 11, 2017
    Assignee: KLA-Tencor Corp.
    Inventors: Bjorn Brauer, Ravikumar Sanapala
  • Publication number: 20170076911
    Abstract: Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 16, 2017
    Inventors: Hong Chen, Kenong Wu, Martin Plihal, Vidur Pandita, Ravikumar Sanapala, Vivek Bhagat, Rahul Lakhawat, Oksen Baris, Rajesh Ramachandran, Naoshin Haque
  • Publication number: 20160377561
    Abstract: A defect inspection system includes an inspection sub-system and a controller communicatively coupled to the detector. The inspection sub-system includes an illumination source configured to generate a beam of illumination, a set of illumination optics to direct the beam of illumination to a sample, and a detector configured to collect illumination emanating from the sample. The controller includes a memory device and one or more processors configured to execute program instructions. The controller is configured to determine one or more target patterns corresponding to one or more features on the sample, define one or more care areas on the sample based on the one or more target patterns and design data of the sample stored within the memory device of the controller, and identify one or more defects within the one or more care areas of the sample based on the illumination collected by the detector.
    Type: Application
    Filed: May 27, 2016
    Publication date: December 29, 2016
    Inventors: Vijayakumar Ramachandran, Ravikumar Sanapala, Vidyasagar Anantha, Philip Measor, Rajesh Manepalli, Jing Fang
  • Patent number: 9518934
    Abstract: Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: December 13, 2016
    Assignee: KLA-Tencor Corp.
    Inventors: Hong Chen, Kenong Wu, Martin Plihal, Vidur Pandita, Ravikumar Sanapala, Vivek Bhagat, Rahul Lakhawat, Oksen Baris, Rajesh Ramachandran, Naoshin Haque
  • Publication number: 20160123898
    Abstract: Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 5, 2016
    Inventors: Hong Chen, Kenong Wu, Martin Plihal, Vidur Pandita, Ravikumar Sanapala, Vivek Bhagat, Rahul Lakhawat, Oksen Baris, Rajesh Ramachandran, Naoshin Haque