Patents by Inventor Ravin Mankad

Ravin Mankad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10930809
    Abstract: A photovoltaic device with increased efficiency and a method for making the same. The present invention provides a photovoltaic device including: a transparent substrate; a transparent conductive electrode layer disposed on the transparent substrate; an n-type layer disposed on the transparent conductive electrode layer; a chalcogen absorber layer disposed on the n-type layer; a p-type molybdenum trioxide (MoO3) interlayer disposed on the chalcogen absorber layer; and a conductive layer disposed on the interlayer. A photovoltaic device having a superstrate configuration with the order of the layers reversed is also provided. The present invention further provides methods for making the photovoltaic devices according to the present invention.
    Type: Grant
    Filed: June 4, 2016
    Date of Patent: February 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Priscilla D. Antunez, Yun Seog Lee, Ravin Mankad, Teodor K. Todorov
  • Patent number: 10790398
    Abstract: Kesterite photovoltaic devices having a back surface field layer are provided. In one aspect, a method of forming a photovoltaic device includes: forming a complete photovoltaic device having a substrate, an electrically conductive layer on the substrate, an absorber layer on the electrically conductive layer, a buffer layer on the absorber layer, and a transparent front contact on the buffer layer; removing the substrate and the electrically conductive layer from the complete photovoltaic device to expose a backside surface of the absorber layer; forming a passivating layer on the backside surface of the absorber layer; and forming a high work function back contact on the passivating layer. A photovoltaic device having a passivating layer is also provided.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: September 29, 2020
    Assignee: International Business Machines Corporation
    Inventors: Priscilla D. Antunez, Bruce A. Ek, Richard A. Haight, Ravin Mankad, Saurabh Singh, Teodor K. Todorov
  • Publication number: 20190334043
    Abstract: Techniques for forming an ohmic back contact for Ag2ZnSn(S,Se)4 photovoltaic devices. In one aspect, a method for forming a photovoltaic device includes the steps of: depositing a refractory electrode material onto a substrate; depositing a contact material onto the refractory electrode material, wherein the contact material includes a transition metal oxide; forming an absorber layer on the contact material, wherein the absorber layer includes Ag, Zn, Sn, and at least one of S and Se; annealing the absorber layer; forming a buffer layer on the absorber layer; and forming a top electrode on the buffer layer. The refractory electrode material may be Mo, W, Pt, Ti, TiN, FTO, and combinations thereof. The transition metal oxide may be TiO2, ZnO, SnO, ZnSnO, Ga2O3, and combinations thereof. A photovoltaic device is also provided.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Talia S. Gershon, Oki Gunawan, Richard A. Haight, Ravin Mankad
  • Patent number: 10446704
    Abstract: Techniques for forming an ohmic back contact for Ag2ZnSn(S,Se)4 photovoltaic devices. In one aspect, a method for forming a photovoltaic device includes the steps of: depositing a refractory electrode material onto a substrate; depositing a contact material onto the refractory electrode material, wherein the contact material includes a transition metal oxide; forming an absorber layer on the contact material, wherein the absorber layer includes Ag, Zn, Sn, and at least one of S and Se; annealing the absorber layer; forming a buffer layer on the absorber layer; and forming a top electrode on the buffer layer. The refractory electrode material may be Mo, W, Pt, Ti, TiN, FTO, and combinations thereof. The transition metal oxide may be TiO2, ZnO, SnO, ZnSnO, Ga2O3, and combinations thereof. A photovoltaic device is also provided.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: October 15, 2019
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Oki Gunawan, Richard A. Haight, Ravin Mankad
  • Publication number: 20180294368
    Abstract: Kesterite photovoltaic devices having a back surface field layer are provided. In one aspect, a method of forming a photovoltaic device includes: forming a complete photovoltaic device having a substrate, an electrically conductive layer on the substrate, an absorber layer on the electrically conductive layer, a buffer layer on the absorber layer, and a transparent front contact on the buffer layer; removing the substrate and the electrically conductive layer from the complete photovoltaic device to expose a backside surface of the absorber layer; forming a passivating layer on the backside surface of the absorber layer; and forming a high work function back contact on the passivating layer. A photovoltaic device having a passivating layer is also provided.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 11, 2018
    Inventors: Priscilla D. Antunez, Bruce A. Ek, Richard A. Haight, Ravin Mankad, Saurabh Singh, Teodor K. Todorov
  • Patent number: 10014423
    Abstract: Kesterite photovoltaic devices having a back surface field layer are provided. In one aspect, a method of forming a photovoltaic device includes: forming a complete photovoltaic device having a substrate, an electrically conductive layer on the substrate, an absorber layer on the electrically conductive layer, a buffer layer on the absorber layer, and a transparent front contact on the buffer layer; removing the substrate and the electrically conductive layer from the complete photovoltaic device to expose a backside surface of the absorber layer; forming a passivating layer on the backside surface of the absorber layer; and forming a high work function back contact on the passivating layer. A photovoltaic device having a passivating layer is also provided.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Priscilla D. Antunez, Bruce A. Ek, Richard A. Haight, Ravin Mankad, Saurabh Singh, Teodor K. Todorov
  • Publication number: 20180097130
    Abstract: Kesterite photovoltaic devices having a back surface field layer are provided. In one aspect, a method of forming a photovoltaic device includes: forming a complete photovoltaic device having a substrate, an electrically conductive layer on the substrate, an absorber layer on the electrically conductive layer, a buffer layer on the absorber layer, and a transparent front contact on the buffer layer; removing the substrate and the electrically conductive layer from the complete photovoltaic device to expose a backside surface of the absorber layer; forming a passivating layer on the backside surface of the absorber layer; and forming a high work function back contact on the passivating layer. A photovoltaic device having a passivating layer is also provided.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Priscilla D. Antunez, Bruce A. Ek, Richard A. Haight, Ravin Mankad, Saurabh Singh, Teodor K. Todorov
  • Patent number: 9876130
    Abstract: After forming a layer of a Cu-deficient kesterite compound having the formula Cu2-xZn1+xSn(SySe1-y)4, wherein 0<x<1, and 0?y?1, on a substrate and forming a Ag layer on the Cu-deficient kesterite compound layer, the Cu-deficient kesterite compound layer and Ag layer are annealed in a S- and/or Se-rich ambient to provide a film containing a Ag—Cu mixed kesterite compound having the formula AgxCu2-xZnSn(SySe1-y)4, wherein 0<x<2, and 0?y?1.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: January 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Oki Gunawan, Yun S. Lee, Ravin Mankad
  • Publication number: 20170373213
    Abstract: A photovoltaic device with an improved n-type partner and a method for making the same. The device includes: a transparent substrate; a transparent conductive electrode layer disposed on the transparent substrate; an n-type layer of Zn1-xMgxO, wherein 0<x?1, disposed on the transparent conductive electrode layer; a chalcogen absorber layer disposed on the n-type layer; and a conductive layer disposed on the chalcogen absorber layer. The method includes: forming a transparent conductive electrode layer on a transparent substrate; forming an n-type layer of Zn1-xMgxO, wherein 0<x?1, on the transparent conductive electrode layer; forming a chalcogen absorber layer on the n-type layer; forming a conductive layer on the chalcogen absorber layer; and annealing to form the device. Another device having a superstrate configuration with the order of the layers reversed and a method for making the same is provided.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 28, 2017
    Inventors: TALIA S. GERSHON, RICHARD A. HAIGHT, RAVIN MANKAD, SAURABH SINGH, TEODOR K. TODOROV
  • Publication number: 20170352770
    Abstract: A photovoltaic device with increased efficiency and a method for making the same. The present invention provides a photovoltaic device including: a transparent substrate; a transparent conductive electrode layer disposed on the transparent substrate; an n-type layer disposed on the transparent conductive electrode layer; a chalcogen absorber layer disposed on the n-type layer; a p-type molybdenum trioxide (MoO3) interlayer disposed on the chalcogen absorber layer; and a conductive layer disposed on the interlayer. A photovoltaic device having a superstrate configuration with the order of the layers reversed is also provided. The present invention further provides methods for making the photovoltaic devices according to the present invention.
    Type: Application
    Filed: June 4, 2016
    Publication date: December 7, 2017
    Inventors: Priscilla D. Antunez, Yun Seog Lee, Ravin Mankad, Teodor K. Todorov
  • Publication number: 20170194518
    Abstract: Techniques for forming an ohmic back contact for Ag2ZnSn(S,Se)4 photovoltaic devices. In one aspect, a method for forming a photovoltaic device includes the steps of: depositing a refractory electrode material onto a substrate; depositing a contact material onto the refractory electrode material, wherein the contact material includes a transition metal oxide; forming an absorber layer on the contact material, wherein the absorber layer includes Ag, Zn, Sn, and at least one of S and Se; annealing the absorber layer; forming a buffer layer on the absorber layer; and forming a top electrode on the buffer layer. The refractory electrode material may be Mo, W, Pt, Ti, TiN, FTO, and combinations thereof. The transition metal oxide may be TiO2, ZnO, SnO, ZnSnO, Ga2O3, and combinations thereof. A photovoltaic device is also provided.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Talia S. Gershon, Oki Gunawan, Richard A. Haight, Ravin Mankad