Patents by Inventor Ravinath Kausik Kadayam Viswanathan

Ravinath Kausik Kadayam Viswanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150094960
    Abstract: Techniques for calculating metrics for reservoir quality based on light oil and total organic carbon in tight oil reservoirs are described. The techniques include calculating quantities of light oil and total organic carbon from logging data and generating therefrom a continuous log for reservoir quality metric. Additionally new reservoir quality indices are presented that more accurately predict reservoir quality in tight oil plays.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Inventors: Ravinath Kausik Kadayam Viswanathan, Andrew E. Pomerantz, Richard Lewis, Paul Ryan Craddock, Robert L. Kleinberg, Frank P. Shray, Stacy Lynn Reeder Blanco
  • Publication number: 20150022202
    Abstract: Methods for analyzing a formation samples using nuclear magnetic resonance (NMR) are described herein. One method includes performing an NMR measurement of the formation sample to obtain NMR data. The NMR measurement detects NMR signals with echo times of less than or equal to 100 microseconds. The NMR data is analyzed to determine a measure of organic hydrogen content of the formation sample, such as (i) total organic hydrogen content, (ii) kerogen content, (iii) bitumen content, and/or (iv) oil content.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Inventors: Yi-Qiao Song, Albina Rishatovna Mutina, Ravinath Kausik Kadayam Viswanathan, Martin Hurlimann
  • Publication number: 20140232391
    Abstract: An NMR method and apparatus for analyzing a sample of interest applies a static magnetic field together with RF pulses of oscillating magnetic field across a sample volume that encompasses the sample of interest. The RF pulses are defined by a pulse sequence that includes a plurality of measurement segments configured to characterize a plurality of relaxation parameters related to relaxation of nuclear magnetization of the sample of interest. Signals induced by the RF pulses are detected in order to derive the relaxation parameters. The measurement segments of the pulse sequence include at least one first-type measurement segment configured to characterize relaxation of spin-lattice interaction between nuclei of the sample of interest in a rotating frame (T1?) at a predefined frequency. The T1? parameter can be measured in conjunction with the measurement of other relaxation and/or diffusion parameters as part of multidimensional NMR experiments.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: RAVINATH KAUSIK KADAYAM VISWANATHAN, LUKASZ ZIELINSKI, MARTIN D. HÜRLIMANN
  • Publication number: 20120273193
    Abstract: Systems and methods for magic angle spinning nuclear magnetic resonance analysis of samples from unconventional reservoirs are described. Fast and inexpensive methods are described that can provide reliable information on TOC content, type, and maturity (via the relative abundances of different hydrocarbons, for example) without the need for more extensive sample preparation or destruction. If care is taken during sample recovery and storage, NMR can also yield an estimate of gas-in-place, including detailed typing (e.g. methane vs. ethane). The described MAS NMR analysis is used to determine various properties of unconventional reservoirs, including gas and oil shales, which are useful in evaluating their worth and producibility.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: Schlumberger Technology Corporation
    Inventors: Pabitra N. Sen, Gabriela Leu, Nicholas Drenzek, Thomas J. Neville, Yi-Qiao Song, Ravinath Kausik Kadayam Viswanathan