Patents by Inventor Ravinath MANCHANA

Ravinath MANCHANA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12024589
    Abstract: A method for preparing a poly(phenylene ether) includes feeding an oxygen-containing gas phase to a single continuous flow reactor containing a reaction mixture, and oxidatively polymerizing the reaction mixture to form a poly(phenylene ether) in the single reactor. The reaction mixture includes a phenol, a transition metal catalyst, and an organic solvent. A poly(phenylene ether) made by the method and articles including the poly(phenylene ether) are also disclosed. Methods for quantifying phenol concentration and poly(phenylene ether) molecular weight in the reaction mixture are also discussed.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: July 2, 2024
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Sivakumar Sreeramagiri, Samir Anapat, Rajesh Chowdhury, Ravinath Manchana, Bhanu Kiran Vankayala, Shweta Hegde, Ramesh Narayana, Yogesha Subbaiah
  • Patent number: 11472920
    Abstract: A method for preparing a poly(phenylene ether) includes feeding air to a continuous flow reactor that contains a reaction mixture including a phenol, a transition metal catalyst, and an organic solvent; and oxidatively polymerizing the reaction mixture at a specified temperature and pressure to form a poly(phenylene ether). The reaction mixture has a residence time in the continuous flow reactor of less than or equal to 30 minutes. Poly(phenylene ether)s prepared by the method and articles including the poly(phenylene ether)s are also described.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: October 18, 2022
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Sivakumar Sreeramagiri, Samir Anapat, Rajesh Chowdhury, Ravinath Manchana, Bhanu Kiran Vankayala, Hareesh Shamrao Deshpande
  • Publication number: 20210347944
    Abstract: A method for preparing a poly(phenylene ether) includes feeding an oxygen-containing gas phase to a single continuous flow reactor containing a reaction mixture, and oxidatively polymerizing the reaction mixture to form a poly(phenylene ether) in the single reactor. The reaction mixture includes a phenol, a transition metal catalyst, and an organic solvent. A poly(phenylene ether) made by the method and articles including the poly(phenylene ether) are also disclosed. Methods for quantifying phenol concentration and poly(phenylene ether) molecular weight in the reaction mixture are also discussed.
    Type: Application
    Filed: October 10, 2019
    Publication date: November 11, 2021
    Inventors: Sivakumar SREERAMAGIRI, Samir ANAPAT, Rajesh CHOWDHURY, Ravinath MANCHANA, Bhanu Kiran VANKAYALA, Shweta HEGDE, Ramesh NARAYANA, Yogesha SUBBAIAH
  • Publication number: 20200231750
    Abstract: A method for preparing a poly(phenylene ether) includes feeding air to a continuous flow reactor that contains a reaction mixture including a phenol, a transition metal catalyst, and an organic solvent; and oxidatively polymerizing the reaction mixture at a specified temperature and pressure to form a poly(phenylene ether). The reaction mixture has a residence time in the continuous flow reactor of less than or equal to 30 minutes. Poly(phenylene ether)s prepared by the method and articles including the poly(phenylene ether)s are also described.
    Type: Application
    Filed: November 14, 2019
    Publication date: July 23, 2020
    Inventors: Sivakumar Sreeramagiri, Samir Anapat, Rajesh Chowdhury, Ravinath Manchana, Bhanu Kiran Vankayala, Hareesh Shamrao Deshpande
  • Publication number: 20200115314
    Abstract: Systems and methods for producing a non-phthalate based plasticizer. The systems and methods involve dissolving a carboxylic acid and/or anhydride thereof in an alcohol at a temperature below the melting point of the carboxylic anhydride. An advantage of the method is reduced energy consumption compared to conventional methods that require melting the carboxylic anhydride. Furthermore, the method enables the production of non-phthalate based plasticizer in an existing phthalate based plasticizer production facility with minimal modification, thereby reducing capital expenditure.
    Type: Application
    Filed: March 13, 2018
    Publication date: April 16, 2020
    Inventors: Asiff Apdul SUPAHAN, Atul PANT, Ritesh NANDY, Sanjay KATREKAR, Ravinath MANCHANA