Patents by Inventor Ravinder Kachru

Ravinder Kachru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069286
    Abstract: A dual-layer coupling arrangement comprises a first coupling waveguide disposed within a photonic integrated circuit (at a position over an included optical signal waveguide) and a second coupling waveguide disposed above the first coupling waveguide. The first and second coupling waveguides are formed to exhibit splitter configurations that terminate as a pair arms separated by a distance suitable for creating beams that would coincide with a circular mode field of the core region of a coupling optical fiber. The vertical spacing between the first and second coupling waveguides is set so that the pairs of beams exiting from the terminating arms of the coupling waveguides coincide with a circular mode field.
    Type: Application
    Filed: January 13, 2022
    Publication date: February 29, 2024
    Applicant: Aayuna Inc.
    Inventors: Ravinder Kachru, Anujit Shastri, Rao Yelamarty, Sriram Tyagarajan, David Snyder, Kalpendu Shastri
  • Publication number: 20180003906
    Abstract: Disclosed are an apparatus and associated method and computer-readable medium for connecting a fiber array connector (FAC) with a photonic subassembly comprising a plurality of waveguides with a predetermined disposition relative to a top surface of a substrate. A plurality of optical fibers extend to a first surface of the FAC. The method comprises moving, using a positioning device, the FAC from a first position in which the first surface is seated against a second surface of the photonic subassembly to a second position such that the first surface has a predetermined distance from the second surface. The method further comprises performing, using the positioning device, an active alignment of the plurality of optical fibers with the plurality of waveguides, and applying, using an application device, an adhesive to form a physical interface between at least two opposing surfaces of the photonic subassembly and the FAC.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 4, 2018
    Inventors: Ravinder KACHRU, Joyce PETERNEL, Pang-Chen SUN
  • Patent number: 9575266
    Abstract: An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: February 21, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Kishor Desai, Ravinder Kachru, Vipulkumar Patel, Bipin Dama, Kalpendu Shastri, Soham Pathak
  • Patent number: 9557499
    Abstract: Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: January 31, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Ravinder Kachru, Chris Togami, Kishor Desai
  • Patent number: 9482818
    Abstract: Embodiments disclosed herein generally relate to an optical device for transferring light between a first and second waveguide. The optical device may generally include the first waveguide, a first support member and a base on which the first waveguide and first support member are disposed. The optical device may further include a second support member wherein the first support member is disposed between the second support member and the base. The second support member comprises at least one groove. The second waveguide may be disposed at least partially in the groove such that the second waveguide is between the first and second support members. The optical device may further include at least one lens disposed between the first waveguide and the second waveguide to transfer an optical signal between the first and second waveguides through the lens.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 1, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Ravinder Kachru, Pang-Chen Sun, Chris Kiyoshi Togami
  • Patent number: 9476763
    Abstract: An apparatus is provided in which a photodiode supported on a planar light wave circuit assembly and arranged such that a photosensitive portion of the photodiode is aligned along an optical path from the output of the planar light wave circuit to the photodiode of the planar light wave circuit assembly. The photodiode is arranged such that a spot size of light output from the planar light wave circuit is incident on the photosensitive portion such that an optical signal transmitted by the light output is converted to an electric signal by the photodiode. A mounting structure is arranged between the planar light wave circuit assembly and the photodiode in order to support the photodiode on the planar light wave circuit assembly. The optical path of the light output from the planar light wave circuit does not contain any refractive optical elements.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: October 25, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Ravinder Kachru, Stefan Martin Pfnuer, Pangchen Sun
  • Patent number: 9435965
    Abstract: An apparatus for providing single mode optical signal coupling between an opto-electronic transceiver and a single mode optical fiber array takes the form of a lens array and a ferrule component. The lens array includes a plurality of separate lens element disposed to intercept a like plurality of single mode optical output signal from the opto-electronic transceiver and provide as an output a focused version thereof. The ferrule component includes a plurality of single mode fiber stubs that are passively aligned with the lens array and support the transmission of the focused, single mode optical output signals towards the associated single mode optical fiber array.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 6, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Chris Kiyoshi Togami, Soham Pathak, Kalpendu Shastri, Bipin Dama, Vipulkumar Patel, Ravinder Kachru, Kishor Desai
  • Publication number: 20160246004
    Abstract: Embodiments disclosed herein generally relate to an optical device for transferring light between a first and second waveguide. The optical device may generally include the first waveguide, a first support member and a base on which the first waveguide and first support member are disposed. The optical device may further include a second support member wherein the first support member is disposed between the second support member and the base. The second support member comprises at least one groove. The second waveguide may be disposed at least partially in the groove such that the second waveguide is between the first and second support members. The optical device may further include at least one lens disposed between the first waveguide and the second waveguide to transfer an optical signal between the first and second waveguides through the lens.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 25, 2016
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Ravinder KACHRU, Pang-Chen SUN, Chris Kiyoshi TOGAMI
  • Patent number: 9417412
    Abstract: An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: August 16, 2016
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Kalpendu Shastri, Ravinder Kachru, Kishor Desai
  • Patent number: 9417413
    Abstract: An optical assembly package is provided for the optical receive components of an optical transceiver. The optical assembly package includes a receptacle subassembly configured to receive an end of an optical fiber. A housing is provided having an opening at one end configured to receive the receptacle assembly. Optical routing and wavelength demultiplexing elements are mounted to a bottom wall of the housing. An electrical subassembly comprising a support plate, a circuit board mounted on the support plate, an integrated circuit mounted to the circuit board, and a plurality of photodetectors mounted to the support plate proximate an edge of the circuit board. The electrical subassembly is positioned a stacked arrangement beneath the housing to minimize an overall length of the optical assembly package.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: August 16, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Pfnuer, Pangchen Sun, Matt Traverso, Ravinder Kachru
  • Publication number: 20160209606
    Abstract: An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
    Type: Application
    Filed: July 24, 2014
    Publication date: July 21, 2016
    Inventors: Kalpendu SHASTRI, Ravinder KACHRU, Kishor DESAI
  • Publication number: 20160161684
    Abstract: Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 9, 2016
    Inventors: Ravinder KACHRU, Chris TOGAMI, Kishor DESAI
  • Patent number: 9343450
    Abstract: A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: May 17, 2016
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Kalpendu Shastri, Vipulkumar Patel, Mark Webster, Prakash Gothoskar, Ravinder Kachru, Soham Pathak, Rao V. Yelamarty, Thomas Daugherty, Bipin Dama, Kaushik Patel, Kishor Desai
  • Patent number: 9274290
    Abstract: Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 1, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Ravinder Kachru, Chris Togami, Kishor Desai
  • Patent number: 9274282
    Abstract: An optical device may include a waveguide converter that couples an external light-carrying medium to a waveguide embedded within the optical device. In one embodiment, the optical signal emitted from the light-carrying medium enters the converter which focuses the signal (e.g., shrinks the mode of the optical signal) to better match the physical dimensions of the waveguide. Using the converter may improve transmission efficiency relative to directly coupling (e.g., butt-coupling) the light-carrying medium to the waveguide. Specifically, the converter may enable the light-carrying medium to transmit the optical signal directly into the optical device without the use of any external lenses, even if the waveguide is a sub-micron waveguide.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 1, 2016
    Assignee: Cisco Technology, Inc.
    Inventor: Ravinder Kachru
  • Patent number: 9261652
    Abstract: An opto-electronic apparatus comprises a substrate for supporting a plurality of components forming an opto-electronic assembly and an optical component attached to the substrate with an adhesive material, such as a solder or epoxy. The optical component is formed to include a plurality of bond slots disposed in parallel across at least a portion of the bottom surface of the optical component, the plurality of bond slots providing a path for a liquid adhesive material and improving the ability to displace the liquid adhesive material as the component is pressed into the surface of the substrate during the attachment process.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 16, 2016
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: John Fangman, Vipulkumar Patel, Ravinder Kachru
  • Patent number: 9235019
    Abstract: An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 12, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Utpal Chakrabarti, Vipulkumar Patel, Bipin Dama, Ravinder Kachru, Kishor Desai
  • Patent number: 9213152
    Abstract: An apparatus for providing releasable attachment between a fiber connector and an opto-electronic assembly, the opto-electronic assembly utilizing an interposer substrate to support a plurality of opto-electronic components that generates optical output signals and receives optical input signals. An enclosure is used to cover the interposer substrate and includes a transparent region through which the optical output and input signals pass unimpeded. A magnetic connector component is attached to the lid and positioned to surround the transparent region, with a fiber connector for supporting one or more optical fibers magnetically attached to the connector component by virtue of a metallic component contained in the fiber connector. This arrangement provides releasable attachment of the fiber connector to the enclosure in a manner where the optical output and input signals align with the optical fibers in the connector.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: December 15, 2015
    Assignee: Cisco Technology Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, John Fangman, Vipulkumar Patel, Kishor Desai, Ravinder Kachru
  • Publication number: 20150304053
    Abstract: An optical assembly package is provided for the optical receive components of an optical transceiver. The optical assembly package includes a receptacle subassembly configured to receive an end of an optical fiber. A housing is provided having an opening at one end configured to receive the receptacle assembly. Optical routing and wavelength demultiplexing elements are mounted to a bottom wall of the housing. An electrical subassembly comprising a support plate, a circuit board mounted on the support plate, an integrated circuit mounted to the circuit board, and a plurality of photodetectors mounted to the support plate proximate an edge of the circuit board. The electrical subassembly is positioned a stacked arrangement beneath the housing to minimize an overall length of the optical assembly package.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Stefan Pfnuer, Pangchen Sun, Matt Traverso, Ravinder Kachru
  • Patent number: 9151950
    Abstract: Techniques and configurations are provided for packaging optoelectronic devices. In particular, a lid component of an optoelectronic device is provided, and the lid component is configured to cover active components of the optoelectronic device. An optically transparent wall is also provided. The optically transparent wall is coated with an anti-reflective material and configured to interface with a section of the lid component. The optically transparent wall is joined with the section of the lid component such that the optically transparent wall and the lid provide a seal for the active components of the optoelectronic device. Additionally, the lid component has a top surface and a plurality of side surfaces that are coupled to the top surface. An optically transparent wall coated with an anti-reflective material adhesively joins to the top surface and one or more side surfaces.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 6, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Kishor V. Desai, Ravinder Kachru, Soham R. Pathak, Utpal Kumar Chakrabarti