Patents by Inventor Ravinder Kumar Kinnera

Ravinder Kumar Kinnera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230350146
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a subunit having a first interior surface and a first exterior surface. The first interior surface defines a central bore along a longitudinal axis of the optical fiber cable. At least one optical fiber is disposed within the central bore of the subunit, and a plurality of strengthening yarns is disposed around the subunit. A cable sheath disposed around the plurality of strengthening yarns. The cable sheath has a second interior surface and a second exterior surface. The second exterior surface defines an outermost surface of the optical fiber cable. The cable sheath includes from 55% to 68% by weight of a mineral-based flame retardant additive and from 35% to 45% by weight of a polymer blend. The polymer blend includes a co-polyester or co-polyether and a polyolefin or a polyolefin elastomer.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 2, 2023
    Inventors: Michael Alexander Heinz, Ravinder Kumar Kinnera
  • Patent number: 11726283
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a subunit having a first interior surface and a first exterior surface. The first interior surface defines a central bore along a longitudinal axis of the optical fiber cable. At least one optical fiber is disposed within the central bore of the subunit, and a plurality of strengthening yarns is disposed around the subunit. A cable sheath disposed around the plurality of strengthening yarns. The cable sheath has a second interior surface and a second exterior surface. The second exterior surface defines an outermost surface of the optical fiber cable. The cable sheath includes from 55% to 68% by weight of a mineral-based flame retardant additive and from 35% to 45% by weight of a polymer blend. The polymer blend includes a co-polyester or co-polyether and a polyolefin or a polyolefin elastomer.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: August 15, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Michael Alexander Heinz, Ravinder Kumar Kinnera
  • Patent number: 11391900
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a cable sheath having an interior surface and an exterior surface. The interior surface defines a longitudinal bore and the exterior surface defines an outermost surface of the optical fiber cable. The optical fiber cable also includes a plurality of micromodules disposed within the longitudinal bore. Each micromodule of the plurality of micromodules includes a micromodule jacket surrounding at least one optical fiber. The micromodule jacket of each of the plurality of micromodules is made of a first polymer composition having a first melt temperature, and the cable sheath is made of a second polymer composition having a second melt temperature that is less than the first melt temperature. The first polymer composition and the second polymer compositions are both low smoke, zero halogen materials.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: July 19, 2022
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Michael Alexander Heinz, Ravinder Kumar Kinnera
  • Publication number: 20220155542
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a subunit having a first interior surface and a first exterior surface. The first interior surface defines a central bore along a longitudinal axis of the optical fiber cable. At least one optical fiber is disposed within the central bore of the subunit, and a plurality of strengthening yarns is disposed around the subunit. A cable sheath disposed around the plurality of strengthening yarns. The cable sheath has a second interior surface and a second exterior surface. The second exterior surface defines an outermost surface of the optical fiber cable. The cable sheath includes from 55% to 68% by weight of a mineral-based flame retardant additive and from 35% to 45% by weight of a polymer blend. The polymer blend includes a co-polyester or co-polyether and a polyolefin or a polyolefin elastomer.
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Inventors: Michael Alexander Heinz, Ravinder Kumar Kinnera
  • Patent number: 11256052
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a subunit having a first interior surface and a first exterior surface. The first interior surface defines a central bore along a longitudinal axis of the optical fiber cable. At least one optical fiber is disposed within the central bore of the subunit, and a plurality of strengthening yarns is disposed around the subunit. A cable sheath disposed around the plurality of strengthening yarns. The cable sheath has a second interior surface and a second exterior surface. The second exterior surface defines an outermost surface of the optical fiber cable. The cable sheath includes from 55% to 68% by weight of a mineral-based flame retardant additive and from 35% to 45% by weight of a polymer blend. The polymer blend includes a co-polyester or co-polyether and a polyolefin or a polyolefin elastomer.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: February 22, 2022
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Michael Alexander Heinz, Ravinder Kumar Kinnera
  • Publication number: 20210149137
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a cable sheath having an interior surface and an exterior surface. The interior surface defines a longitudinal bore and the exterior surface defines an outermost surface of the optical fiber cable. The optical fiber cable also includes a plurality of micromodules disposed within the longitudinal bore. Each micromodule of the plurality of micromodules includes a micromodule jacket surrounding at least one optical fiber. The micromodule jacket of each of the plurality of micromodules is made of a first polymer composition having a first melt temperature, and the cable sheath is made of a second polymer composition having a second melt temperature that is less than the first melt temperature. The first polymer composition and the second polymer compositions are both low smoke, zero halogen materials.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 20, 2021
    Inventors: Michael Alexander Heinz, Ravinder Kumar Kinnera
  • Publication number: 20210011238
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a subunit having a first interior surface and a first exterior surface. The first interior surface defines a central bore along a longitudinal axis of the optical fiber cable. At least one optical fiber is disposed within the central bore of the subunit, and a plurality of strengthening yarns is disposed around the subunit. A cable sheath disposed around the plurality of strengthening yarns. The cable sheath has a second interior surface and a second exterior surface. The second exterior surface defines an outermost surface of the optical fiber cable. The cable sheath includes from 55% to 68% by weight of a mineral-based flame retardant additive and from 35% to 45% by weight of a polymer blend. The polymer blend includes a co-polyester or co-polyether and a polyolefin or a polyolefin elastomer.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 14, 2021
    Inventors: Michael Alexander Heinz, Ravinder Kumar Kinnera
  • Patent number: 10534149
    Abstract: A flame retardant and/or crush-resistant optical cable is provided. The cable includes a plurality of optical fibers and an inner jacket surrounding the plurality of optical fibers. The inner jacket includes an inner layer and an outer layer. The cable includes an armor layer surrounding the inner jacket. The cable includes an outer jacket surrounding the armor layer. The inner layer of the inner jacket, the outer layer of the inner jacket and/or the outer jacket are formed from one or more different material providing different properties to the cable. For example, the outer jacket may be formed from a flame-retardant, zero-halogen polymer material, the inner layer of the inner jacket may be chemically resistant to inorganic material, and the outer layer of the inner jacket may be chemically resistant to organic material.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: January 14, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Holger Baetz, Anne Germaine Bringuier, Ravinder Kumar Kinnera, Wesley Brian Nicholson
  • Publication number: 20180231729
    Abstract: A flame retardant and/or crush-resistant optical cable is provided. The cable includes a plurality of optical fibers and an inner jacket surrounding the plurality of optical fibers. The inner jacket includes an inner layer and an outer layer. The cable includes an armor layer surrounding the inner jacket. The cable includes an outer jacket surrounding the armor layer. The inner layer of the inner jacket, the outer layer of the inner jacket and/or the outer jacket are formed from one or more different material providing different properties to the cable. For example, the outer jacket may be formed from a flame-retardant, zero-halogen polymer material, the inner layer of the inner jacket may be chemically resistant to inorganic material, and the outer layer of the inner jacket may be chemically resistant to organic material.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 16, 2018
    Inventors: Holger Baetz, Anne Germaine Bringuier, Ravinder Kumar Kinnera, Wesley Brian Nicholson
  • Patent number: 9690062
    Abstract: A flame-retardant fiber optic cable includes core elements, a film surrounding the core elements, and a jacket surrounding the film. The core elements include one or more optical fibers and at least one tube surrounding the one or more optical fibers. The material composition of the film differs from the jacket and the film is relatively thin.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 27, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: William Carl Hurley, Ravinder Kumar Kinnera, Warren Welborn McAlpine, Joel Laine Parker, Christopher Mark Quinn
  • Publication number: 20160306129
    Abstract: A flame-retardant fiber optic cable includes core elements, a film surrounding the core elements, and a jacket surrounding the film. The core elements include one or more optical fibers and at least one tube surrounding the one or more optical fibers. The material composition of the film differs from the jacket and the film is relatively thin.
    Type: Application
    Filed: June 23, 2016
    Publication date: October 20, 2016
    Inventors: William Carl Hurley, Ravinder Kumar Kinnera, Warren Welborn McAlpine, Joel Laine Parker, Christopher Mark Quinn