Patents by Inventor Ravindra M. Kapre

Ravindra M. Kapre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11876090
    Abstract: An electrostatic discharge protection circuit capable of clamping both positive and negative ESD events and passing signals is provided. Generally, the circuit includes a p-channel field-effect transistor (PFET) clamp coupled to a pin to be protected, the PFET clamp including a plurality of PFETs in a DN-well, an n-channel field-effect transistors (NFET) clamp coupled between ground and the pin through the PFET clamp, the NFET clamp including a plurality of NFETs coupled in series, and a bias network for biasing a voltage of the DN well to substantially equal a voltage on the pin when the voltage on the pin is greater than ground potential, and to ground potential when the pin voltage is less than ground potential. The plurality of are PFETs coupled in parallel between the pin and the NFET clamp, each of the PFETs is coupled to the pin though one of a plurality ballast resistors.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: January 16, 2024
    Assignee: Cypress Semiconductor Corporation
    Inventors: David Michael Rogers, Eric N. Mann, Eric Lee Swindlehurst, Toru Miyamae, Timothy John Williams, Ryuta Nagai, Sungkwon Lee, Ravindra M. Kapre, Mimi Xuefeng Zhao Qian, Yan Yi, Dung Si Ho, Boo Chin-Hua
  • Publication number: 20230343779
    Abstract: An electrostatic discharge protection circuit capable of clamping both positive and negative ESD events and passing signals is provided. Generally, the circuit includes a p-channel field-effect transistor (PFET) clamp coupled to a pin to be protected, the PFET clamp including a plurality of PFETs in a DN-well, an n-channel field-effect transistors (NFET) clamp coupled between ground and the pin through the PFET clamp, the NFET clamp including a plurality of NFETs coupled in series, and a bias network for biasing a voltage of the DN well to substantially equal a voltage on the pin when the voltage on the pin is greater than ground potential, and to ground potential when the pin voltage is less than ground potential. The plurality of are PFETs coupled in parallel between the pin and the NFET clamp, each of the PFETs is coupled to the pin though one of a plurality ballast resistors.
    Type: Application
    Filed: November 17, 2022
    Publication date: October 26, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: David Michael Rogers, Eric N. Mann, Eric Lee Swindlehurst, Toru Miyamae, Timothy John Williams, Ryuta Nagai, Sungkwon Lee, Ravindra M. Kapre, Mimi Xuefeng Zhao Qian, Yan Yi, Dung Si Ho, Boo Chin-Hua
  • Patent number: 11581729
    Abstract: A system and method for combining positive and negative voltage electrostatic discharge (ESD) protection into a clamp that uses cascoded circuitry, including detecting, by an electrostatic discharge protection system, a voltage pulse on an input pin of an integrated circuit (IC) controller, the IC controller coupled between a power supply node and a ground supply node; determining, by the ESD protection circuit, an ESD event on the input pin based on the voltage detected on the input pin; and/or controlling, by the ESD protection circuit during the ESD event, one or more clamps to transport the voltage pulse from the input pin of the IC controller to the power supply node.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: February 14, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: David Michael Rogers, Henry H. Yuan, Mimi Qian, Myeongseok Lee, Sungkwon Lee, Yan Yi, Ravindra M. Kapre, Murtuza Lilamwala
  • Patent number: 11521962
    Abstract: An electrostatic discharge protection circuit capable of clamping both positive and negative ESD events and passing signals is provided. Generally, the circuit includes a p-channel field-effect transistor (PFET) clamp coupled to a pin to be protected, the PFET clamp including a plurality of PFETs in a DN-well, an n-channel field-effect transistors (NFET) clamp coupled between ground and the pin through the PFET clamp, the NFET clamp including a plurality of NFETs coupled in series, and a bias network for biasing a voltage of the DN well to substantially equal a voltage on the pin when the voltage on the pin is greater than ground potential, and to ground potential when the pin voltage is less than ground potential. The plurality of are PFETs coupled in parallel between the pin and the NFET clamp, each of the PFETs is coupled to the pin though one of a plurality ballast resistors.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: December 6, 2022
    Assignee: Cypress Semiconductor Corporation
    Inventors: David Michael Rogers, Eric N. Mann, Eric Lee Swindlehurst, Toru Miyamae, Timothy John Williams, Ryuta Nagai, Sungkwon Lee, Ravindra M. Kapre, Mimi Xuefeng Zhao Qian, Yan Yi, Dung Si Ho, Boo Chin-Hua
  • Publication number: 20220284951
    Abstract: A semiconductor device that has a semiconductor-oxide-nitride-oxide-semiconductor (SONOS) based non-volatile memory (NVM) array including NVM cells arranged in rows and columns, in which NVM transistors of the NVM cells are configured to store N×analog values corresponding to the N×levels of their drain current (ID) or threshold voltage (VT) levels, digital-to-analog (DAC) function that receives and converts digital signals from external devices, column multiplexor (mux) function that is configured to select and combine the analog value read from the NVM cells, and analog-to-digital (ADC) function that is configured to convert analog results of the column mux function to digital values and output the digital values.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: Infineon Technologies LLC
    Inventors: Venkatraman Prabhakar, Krishnaswamy Ramkumar, Vineet Agrawal, Long Hinh, Swatilekha Saha, Santanu Kumar Samanta, Michael Amundson, Ravindra M. Kapre
  • Patent number: 11367481
    Abstract: A semiconductor inference device that has a non-volatile memory (NVM) array including NVM cells arranged in rows and columns, in which each NVM cell comprises a charge trapping transistor configured to store one of N×analog values corresponding to N×levels of its drain current (ID) or threshold voltage (VT) levels, representing N×weight values for multiply accumulate (MAC) operations. The semiconductor inference device also includes digital-to-analog (DAC) function and multiplexor (mux) function configured to generate an analog MAC result based on the digital inputs converted results and the weight values read results, and analog-to-digital (ADC) function configured to convert the analog MAC result of the mux function to a digital value. Other embodiments of the semiconductor inference device and related methods and systems are also disclosed.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: June 21, 2022
    Assignee: Infineon Technologies LLC
    Inventors: Venkataraman Prabhakar, Krishnaswamy Ramkumar, Vineet Agrawal, Long Hinh, Swatilekha Saha, Santanu Kumar Samanta, Michael Amundson, Ravindra M. Kapre
  • Publication number: 20210350850
    Abstract: A semiconductor inference device that has a non-volatile memory (NVM) array including NVM cells arranged in rows and columns, in which each NVM cell comprises a charge trapping transistor configured to store one of N×analog values corresponding to N×levels of its drain current (ID) or threshold voltage (VT) levels, representing N×weight values for multiply accumulate (MAC) operations. The semiconductor inference device also includes digital-to-analog (DAC) function and multiplexor (mux) function configured to generate an analog MAC result based on the digital inputs converted results and the weight values read results, and analog-to-digital (ADC) function configured to convert the analog MAC result of the mux function to a digital value. Other embodiments of the semiconductor inference device and related methods and systems are also disclosed.
    Type: Application
    Filed: May 25, 2021
    Publication date: November 11, 2021
    Applicant: Cypress Semiconductor Corporation
    Inventors: Venkataraman Prabhakar, Krishnaswamy Ramkumar, Vineet Agrawal, Long Hinh, Swatilekha Saha, Santanu Kumar Samanta, Michael Amundson, Ravindra M. Kapre
  • Publication number: 20210344193
    Abstract: A system and method for combining positive and negative voltage electrostatic discharge (ESD) protection into a clamp that uses cascoded circuitry, including detecting, by an electrostatic discharge protection system, a voltage pulse on an input pin of an integrated circuit (IC) controller, the IC controller coupled between a power supply node and a ground supply node; determining, by the ESD protection circuit, an ESD event on the input pin based on the voltage detected on the input pin; and/or controlling, by the ESD protection circuit during the ESD event, one or more clamps to transport the voltage pulse from the input pin of the IC controller to the power supply node.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 4, 2021
    Applicant: Cypress Semiconductor Corporation
    Inventors: David Michael Rogers, Henry Yuan, Mimi Qian, Myeongseok Lee, Sungkwon Lee, Yan Yi, Ravindra M. Kapre, Murtuza Lilamwala
  • Patent number: 9842629
    Abstract: A memory including current-limiting devices and methods of operating the same to prevent a spread of soft errors along rows in an array of memory cells in the memory are provided. In one embodiment, the method begins with providing a memory comprising an array of a plurality of memory cells arranged in rows and columns, wherein each of the columns is coupled to a supply voltage through one of a plurality of current-limiting devices, Next, each of the plurality of current-limiting devices are configured to limit current through each of the columns so that current through a memory cell in a row of the column due to a soft error rate event does not result in a lateral spread of soft errors to memory cells in the row in an adjacent column. Other embodiments are also provided.
    Type: Grant
    Filed: March 29, 2014
    Date of Patent: December 12, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Ravindra M Kapre, Shahin Sharifzadeh, Helmut Puchner, Nayan Patel
  • Publication number: 20140211547
    Abstract: A memory including current-limiting devices and methods of operating the same to prevent a spread of soft errors along rows in an array of memory cells in the memory are provided. In one embodiment, the method begins with providing a memory comprising an array of a plurality of memory cells arranged in rows and columns, wherein each of the columns is coupled to a supply voltage through one of a plurality of current-limiting devices, Next, each of the plurality of current-limiting devices are configured to limit current through each of the columns so that current through a memory cell in a row of the column due to a soft error rate event does not result in a lateral spread of soft errors to memory cells in the row in an adjacent column. Other embodiments are also provided.
    Type: Application
    Filed: March 29, 2014
    Publication date: July 31, 2014
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Ravindra M Kapre, Shahin Sharifzadeh, Helmut Puchner, Nayan Patel
  • Patent number: 8493804
    Abstract: An embodiment includes configuring a current-limiting device to place along a power-supply bus to limit current through a first complimentary-metal-oxide semiconductor (CMOS) circuit coupled to the power-supply bus so that current does not exceed a trigger current level of a pnpn diode in a second CMOS circuit coupled to the power bus.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Cypress Semiconductor Corporation
    Inventors: Ravindra M. Kapre, Shahin Sharifzadeh
  • Publication number: 20130135954
    Abstract: A complementary field-effect (CMOS) circuit is provided which includes a current-limiting device arranged along a power-supply bus or a ground bus of the circuit. The current-limiting device is configured to prevent latch up of the CMOS circuit. More specifically, the current-limiting device is configured to maintain a junction of the parasitic pnpn diode structure as reverse-biased. A method is also provided which includes creating a current-voltage plot of a pnpn diode arranged within a first CMOS circuit which is absent of a current-limiting device arranged along a power bus of the circuit. In addition, the method includes determining a holding current level from the current-voltage plot and sizing a current-limiting device to place along a power bus of a second CMOS circuit comprising similar design specifications as the first CMOS circuit such that the current through the second CMOS circuit does not exceed the holding current level.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 30, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Ravindra M. Kapre, Shahin Sharifzadeh
  • Patent number: 8252640
    Abstract: A method of forming a semiconductor structure includes rapid thermal annealing of a gate stack on a semiconductor substrate at a temperature of at least 950° C., followed by forming source/drain regions in the semiconductor substrate.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: August 28, 2012
    Inventors: Ravindra M. Kapre, Sethuraman Lakshminarayanan
  • Patent number: 8045410
    Abstract: A complementary field-effect (CMOS) circuit is provided which includes a current-limiting device arranged along a power-supply bus or a ground bus of the circuit The current-limiting device is configured to prevent latch up of the CMOS circuit. More specifically, the current-limiting device is configured to maintain a junction of the parasitic pnpn diode structure as reverse-biased. A method is also provided which includes creating a current-voltage plot of a pnpn diode arranged within a first CMOS circuit which is absent of a current-limiting device arranged along a power bus of the circuit. In addition, the method includes determining a holding current level from the current-voltage plot and sizing a current-limiting device to place along a power bus of a second CMOS circuit comprising similar design specifications as the first CMOS circuit such that the current through the second CMOS circuit does not exceed the holding current level.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: October 25, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Ravindra M. Kapre, Shahin Sharifzadeh
  • Patent number: 7773442
    Abstract: A complementary field-effect (CMOS) circuit is provided which includes a current-limiting device arranged along a power-supply bus or a ground bus of the circuit. The current-limiting device is configured to prevent latch up of the CMOS circuit. More specifically, the current-limiting device is configured to maintain a junction of the parasitic pnpn diode structure as reverse-biased. A method is also provided which includes creating a current-voltage plot of a pnpn diode arranged within a first CMOS circuit which is absent of a current-limiting device arranged along a power bus of the circuit. In addition, the method includes determining a holding current level from the current-voltage plot and sizing a current-limiting device to place along a power bus of a second CMOS circuit comprising similar design specifications as the first CMOS circuit such that the current through the second CMOS circuit does not exceed the holding current level.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: August 10, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Ravindra M. Kapre, Shahin Sharifzadeh
  • Publication number: 20090213677
    Abstract: A complementary field-effect (CMOS) circuit is provided which includes a current-limiting device arranged along a power-supply bus or a ground bus of the circuit The current-limiting device is configured to prevent latch up of the CMOS circuit. More specifically, the current-limiting device is configured to maintain a junction of the parasitic pnpn diode structure as reverse-biased. A method is also provided which includes creating a current-voltage plot of a pnpn diode arranged within a first CMOS circuit which is absent of a current-limiting device arranged along a power bus of the circuit. In addition, the method includes determining a holding current level from the current-voltage plot and sizing a current-limiting device to place along a power bus of a second CMOS circuit comprising similar design specifications as the first CMOS circuit such that the current through the second CMOS circuit does not exceed the holding current level.
    Type: Application
    Filed: May 1, 2009
    Publication date: August 27, 2009
    Inventors: Ravindra M. Kapre, Shahin Sharifzadeh
  • Patent number: 6747318
    Abstract: A method for fabricating buried channel NMOS devices and the devices themselves are disclosed. These buried channel NMOS devices are fabricated with a p-type substrate, an n-type implant in the top portion (approximately 400 to 1000 Å deep) of the substrate, and an insulating gate dielectric above the n-type implant. An n-type or p-type doped polysilicon gate electrode is formed on top of the insulating gate dielectric. The n-type implant region is doped in such a way that it is depleted of charge carriers when the device's gate electrode is at the same potential as the well (zero bias). When the gate electrode is biased +Ve with respect to the device's well substrate a conducting channel of mobile electrons is formed in a portion of the buried layer. This type of biasing is known as inversion bias since the charge carriers are of the opposite type than the p-well.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: June 8, 2004
    Assignee: LSI Logic Corporation
    Inventors: Ravindra M. Kapre, Tommy Hsiao, Yanhua Wang, Kyungjin Min
  • Patent number: 6656805
    Abstract: A relatively thin gate insulator of a digital switching transistor is formed from a layer of silicon oxynitride which was initially formed by implanting nitrogen atoms in a silicon substrate and oxidizing the nitrogen and silicon. It has been discovered that an outer layer of silicon dioxide is formed as a part of the silicon oxynitride layer. Removing this outer layer of silicon dioxide from the silicon oxynitride layer leaves a thin remaining layer of substantially-only silicon oxynitride as the gate insulator. Thinner gate insulators of approximately 15-21 angstroms, for example, can be formed from a grown thickness of 60 angstroms, for example. Gate insulators for digital and analog transistors may be formed simultaneously with a greater differential in thickness been possible by using conventional nitrogen implantation techniques.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: December 2, 2003
    Assignee: LSI Logic Corporation
    Inventors: Arvind Kamath, Rajiv Patel, Ravindra M. Kapre
  • Publication number: 20030077866
    Abstract: A relatively thin gate insulator of a digital switching transistor is formed from a layer of silicon oxynitride which was initially formed by implanting nitrogen atoms in a silicon substrate and oxidizing the nitrogen and silicon. It has been discovered that an outer layer of silicon dioxide is formed as a part of the silicon oxynitride layer. Removing this outer layer of silicon dioxide from the silicon oxynitride layer leaves a thin remaining layer of substantially-only silicon oxynitride as the gate insulator. Thinner gate insulators of approximately 15-21 angstroms, for example, can be formed from a grown thickness of 60 angstroms, for example. Gate insulators for digital and analog transistors may be formed simultaneously with a greater differential in thickness been possible by using conventional nitrogen implantation techniques.
    Type: Application
    Filed: November 26, 2002
    Publication date: April 24, 2003
    Inventors: Arvind Kamath, Rajiv Patel, Ravindra M. Kapre
  • Patent number: 6521549
    Abstract: A relatively thin gate insulator of a digital switching transistor is formed from a layer of silicon oxynitride which was initially formed by implanting nitrogen atoms in a silicon substrate and oxidizing the nitrogen and silicon. It has been discovered that an outer layer of silicon dioxide is formed as a part of the silicon oxynitride layer. Removing this outer layer of silicon dioxide from the silicon oxynitride layer leaves a thin remaining layer of substantially-only silicon oxynitride as the gate insulator. Thinner gate insulators of approximately 15-21 angstroms, for example, can be formed from a grown thickness of 60 angstroms, for example. Gate insulators for digital and analog transistors may be formed simultaneously with a greater differential in thickness been possible by using conventional nitrogen implantation techniques.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: February 18, 2003
    Assignee: LSI Logic Corporation
    Inventors: Arvind Kamath, Rajiv Patel, Ravindra M. Kapre