Patents by Inventor Ravindra N. Singh

Ravindra N. Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220090071
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Application
    Filed: August 19, 2021
    Publication date: March 24, 2022
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Publication number: 20190292540
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Application
    Filed: March 4, 2019
    Publication date: September 26, 2019
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Patent number: 10266822
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: April 23, 2019
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Patent number: 9856474
    Abstract: The present invention is directed to methods and compositions for blocking the effect of the intronic inhibitory splicing region of intron 7 of the SMN2 gene. The compositions and methods of the instant invention include short oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target sites in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The target regions include a unique RNA structure and a 6-nucleotide long sequence that is essential for initiating a long distance steric inhibitory interaction. The identified region provides a novel target deep within SMN2 intron 7. Intronic targets are highly desirable as annealing of an ASO to an intron does not interfere with translation and transport of mRNA. The invention also provides opportunity to employ a short antisense oligonucleotide or a small compound against the unique RNA structure responsible of SMN2 exon 7 skipping in SMA.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: January 2, 2018
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Ravindra N. Singh, Natalia N. Singh
  • Publication number: 20170096664
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Application
    Filed: September 19, 2016
    Publication date: April 6, 2017
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Publication number: 20170037397
    Abstract: The present invention is directed to methods and compositions for blocking the effect of the intronic inhibitory splicing region of intron 7 of the SMN2 gene. The compositions and methods of the instant invention include short oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target sites in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The short target regions are 8-mers and 5-mers and also include the identification of a single nucleotide base that is essential for initiating a long distance stearic inhibitory interactions as well as novel targets distant from intron 7 which block the intronic inhibitory splicing of the same. These short target regions and concomitant inhibitory blocking oligonucleotides are less expensive and easier to manufacture and are small enough to cross the blood brain barrier.
    Type: Application
    Filed: November 12, 2015
    Publication date: February 9, 2017
    Inventors: Ravindra N. Singh, Natalia N. Singh
  • Patent number: 9476042
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 25, 2016
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Patent number: 9217147
    Abstract: The present invention is directed to methods and compositions for blocking the effect of the intronic inhibitory splicing region of intron 7 of the SMN2 gene. The compositions and methods of the instant invention include short oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target sites in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The short target regions are 8-mers and 5-mers and also include the identification of a single nucleotide base that is essential for initiating a long distance stearic inhibitory interactions as well as novel targets distant from intron 7 which block the intronic inhibitory splicing of the same. These short target regions and concomitant inhibitory blocking oligonucleotides are less expensive and easier to manufacture and are small enough to cross the blood brain barrier.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: December 22, 2015
    Assignee: Iowa State Research Foundation, Inc.
    Inventors: Ravindra N. Singh, Natalia N. Singh
  • Publication number: 20150315582
    Abstract: The present invention is directed to methods and compositions for blocking the effect of the intronic inhibitory splicing region of intron 7 of the SMN2 gene. The compositions and methods of the instant invention include short oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target sites in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The target regions include a unique RNA structure and a 6-nucleotide long sequence that is essential for initiating a long distance steric inhibitory interaction. The identified region provides a novel target deep within SMN2 intron 7. Intronic targets are highly desirable as annealing of an ASO to an intron does not interfere with translation and transport of mRNA. The invention also provides opportunity to employ a short antisense oligonucleotide or a small compound against the unique RNA structure responsible of SMN2 exon 7 skipping in SMA.
    Type: Application
    Filed: January 16, 2014
    Publication date: November 5, 2015
    Inventors: Ravindra N. Singh, Natalia N. Singh
  • Publication number: 20140155463
    Abstract: The present invention is directed to methods and compositions for blocking the effect of the intronic inhibitory splicing region of intron 7 of the SMN2 gene. The compositions and methods of the instant invention include short oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target sites in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The short target regions are 8-mers and 5-mers and also include the identification of a single nucleotide base that is essential for initiating a long distance stearic inhibitory interactions as well as novel targets distant from intron 7 which block the intronic inhibitory splicing of the same. These short target regions and concomitant inhibitory blocking oligonucleotides are less expensive and easier to manufacture and are small enough to cross the blood brain barrier.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 5, 2014
    Applicant: Iowa State University Research Foundation, Inc.
    Inventors: Ravindra N. Singh, Natalia N. Singh
  • Publication number: 20140066492
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Application
    Filed: October 15, 2013
    Publication date: March 6, 2014
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Ravindra N. SINGH, Natalia N. SINGH, Nirmal K. SINGH, Elliot J. ANDROPHY
  • Patent number: 8586559
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: November 19, 2013
    Assignee: University of Massachusetts
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Publication number: 20120165394
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Application
    Filed: December 19, 2011
    Publication date: June 28, 2012
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Ravindra N. SINGH, Natalia N. SINGH, Nirmal K. SINGH, Elliot J. ANDROPHY
  • Patent number: 8110560
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: February 7, 2012
    Assignee: University of Massachusetts
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Patent number: 7838657
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: November 23, 2010
    Assignee: University of Massachusetts
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy
  • Publication number: 20100087511
    Abstract: The present invention is directed to methods and compositions capable of blocking the inhibitory effect of a newly-identified intronic inhibitory sequence element, named ISS-N1 (for “intronic splicing silencer”), located in the SMN2 gene. The compositions and methods of the instant invention include oligonucleotide reagents (e.g., oligoribonucleotides) that effectively target the SMN2 ISS-N1 site in the SMN2 pre-mRNA, thereby modulating the splicing of SMN2 pre-mRNA to include exon 7 in the processed transcript. The ISS-N1 blocking agents of the invention cause elevated expression of SMN protein, thus compensating for the loss of SMN protein expression commonly observed in subjects with spinal muscular atrophy (SMA).
    Type: Application
    Filed: August 21, 2009
    Publication date: April 8, 2010
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Ravindra N. Singh, Natalia N. Singh, Nirmal K. Singh, Elliot J. Androphy