Patents by Inventor Ravisankar Gurusamy

Ravisankar Gurusamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130012824
    Abstract: Disclose herein is a method of measuring pressures in a coronary sinus. In one embodiment, the method includes: introducing a distal portion of a lead or tool into the coronary sinus, wherein the distal portion includes first and second pressure sensors and at least one selectably expandable member; expanding the at least one expandable member such that the first and second sensors are isolated from each other within the coronary sinus; and taking pressure measurements with the first and second sensors when isolated from each other.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: PACESETTER, INC.
    Inventors: Guy Vanney, Scott Salys, Thao Ngo, Elizabeth Nee, Annapurna Karicherla, Ravisankar Gurusamy, Gene A. Bornzin
  • Patent number: 8287458
    Abstract: Disclose herein is a method of measuring pressures in a coronary sinus. In one embodiment, the method includes: introducing a distal portion of a lead or tool into the coronary sinus, wherein the distal portion includes first and second pressure sensors and at least one selectably expandable member; expanding the at least one expandable member such that the first and second sensors are isolated from each other within the coronary sinus; and taking pressure measurements with the first and second sensors when isolated from each other.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: October 16, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Guy Vanney, Scott Salys, Thao Ngo, Elizabeth Nee, Annapurna Karicherla, Ravisankar Gurusamy, Gene A. Bornzin
  • Patent number: 8114110
    Abstract: A transseptal needle includes an elongate needle body having a distal end and a proximal end and a cannular needle tip located proximate the distal end of the needle body. The needle tip has a distal segment, a proximal segment, and a longitudinal axis. An inner surface of the needle tip defines a passageway spanning at least a portion of the needle tip, and an outer surface of the needle tip defines a wall with the inner surface. The distal segment of the needle tip also includes a wedge surface and a dome-shaped region. The wedge surface forms a wedge angle of other than 90 degrees relative to the longitudinal axis. The dome-shaped region, which intersects the wedge surface, includes at least two bevels that intersect the wedge surface and that intersect each other at one or more points on the needle tip.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 14, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Michael C. Bednarek, Ravisankar Gurusamy, Hans Schnellmann, Todd Stangenes
  • Patent number: 7635353
    Abstract: The instant invention is directed toward transseptal puncture needles and transseptal puncture needle assemblies. More specifically, it relates to curved transseptal puncture needles and needle assemblies that facilitate insertion through curved transseptal introducers. Each curved transseptal puncture needle includes a needle tip with a tangential back bevel configuration, a reverse tangential back bevel configuration, or a conical reverse bevel configuration. The axial orientation of the needle tip relative to the needle curvature, whether on the concave side or convex side of the curved transseptal puncture needle, provides additional benefits. The leading edge of the needle tip is located at a distal end of an inner needle tube, and the leading edge of the needle tip may be positioned away from an outer surface of the inner needle tube and adjacent to an inner surface of the inner needle tube.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: December 22, 2009
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Ravisankar Gurusamy, John D. Ockuly, Hans Schnellmann, James A. Hassett
  • Publication number: 20090270741
    Abstract: Disclose herein is a method of measuring pressures in a coronary sinus. In one embodiment, the method includes: introducing a distal portion of a lead or tool into the coronary sinus, wherein the distal portion includes first and second pressure sensors and at least one selectably expandable member; expanding the at least one expandable member such that the first and second sensors are isolated from each other within the coronary sinus; and taking pressure measurements with the first and second sensors when isolated from each other.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Guy Vanney, Scott Salys, Elizabeth Nee, Thao Thu Nguyen, Annapurna Karicherla, Ravisankar Gurusamy
  • Publication number: 20090171276
    Abstract: A transseptal needle includes an elongate needle body having a distal end and a proximal end and a cannular needle tip located proximate the distal end of the needle body. The needle tip has a distal segment, a proximal segment, and a longitudinal axis. An inner surface of the needle tip defines a passageway spanning at least a portion of the needle tip, and an outer surface of the needle tip defines a wall with the inner surface. The distal segment of the needle tip also includes a wedge surface and a dome-shaped region. The wedge surface forms a wedge angle of other than 90 degrees relative to the longitudinal axis. The dome-shaped region, which intersects the wedge surface, includes at least two bevels that intersect the wedge surface and that intersect each other at one or more points on the needle tip.
    Type: Application
    Filed: May 8, 2008
    Publication date: July 2, 2009
    Inventors: Michael C. Bednarek, Ravisankar Gurusamy, Hans Schnellmann, Todd Stangenes
  • Publication number: 20060064062
    Abstract: The instant invention is directed toward transseptal puncture needles and transseptal puncture needle assemblies. More specifically, it relates to curved transseptal puncture needles and needle assemblies that facilitate insertion through curved transseptal introducers. Each curved transseptal puncture needle includes a needle tip with a tangential back bevel configuration, a reverse tangential back bevel configuration, or a conical reverse bevel configuration. The axial orientation of the needle tip relative to the needle curvature, whether on the concave side or convex side of the curved transseptal puncture needle, provides additional benefits. The leading edge of the needle tip is located at a distal end of an inner needle tube, and the leading edge of the needle tip may be positioned away from an outer surface of the inner needle tube and adjacent to an inner surface of the inner needle tube.
    Type: Application
    Filed: September 22, 2004
    Publication date: March 23, 2006
    Inventors: Ravisankar Gurusamy, John Ockuly, Hans Schnellmann, James Hassett