Patents by Inventor Ravisubhash Tangirala

Ravisubhash Tangirala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970646
    Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: April 30, 2024
    Assignee: SHOEI CHEMICAL INC.
    Inventors: Ashenafi Damtew Mamuye, Christopher Sunderland, Ilan Jen-La Plante, Chunming Wang, John J. Curley, Nahyoung Kim, Ravisubhash Tangirala
  • Patent number: 11926776
    Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: March 12, 2024
    Assignee: SHOEI CHEMICAL INC.
    Inventors: Ravisubhash Tangirala, Jay Yamanaga, Wenzhou Guo, Christopher Sunderland, Ashenafi Damtew Mamuye, Chunming Wang, Eunhee Hwang, Nahyoung Kim
  • Publication number: 20230155075
    Abstract: A light emitting device includes a first optical cavity bounded by cavity walls, a first light emitting diode located in the first optical cavity and configured to emit blue or ultraviolet radiation first incident photons, a first color conversion material located over the first light emitting diode and configured to absorb the first incident photons emitted by the light emitting diode and to generate first converted photons having a longer peak wavelength than a peak wavelength of the first incident photons, and a first color selector located over the first color conversion material and configured to absorb or reflect the first incident photons and to transmit the first converted photons.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 18, 2023
    Inventors: Jason HARTLOVE, Saket CHADDA, Ernest C. LEE, Brian KIM, Homer ANTONIADIS, Ravisubhash TANGIRALA, David OLMEIJER
  • Publication number: 20230002672
    Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.
    Type: Application
    Filed: June 22, 2022
    Publication date: January 5, 2023
    Applicant: Nanosys, Inc.
    Inventors: Ravisubhash TANGIRALA, Jay YAMANAGA, Wenzhou GUO, Christopher SUNDERLAND, Ashenafi Damtew MAMUYE, Chunming WANG, Eunhee HWANG, Nahyoung KIM
  • Patent number: 11407940
    Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: August 9, 2022
    Assignee: Nanosys, Inc.
    Inventors: Ravisubhash Tangirala, Jay Yamanaga, Wenzhou Guo, Christopher Sunderland, Ashenafi Damtew Mamuye, Chunming Wang, Eunhee Hwang, Nahyoung Kim
  • Publication number: 20220228057
    Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.
    Type: Application
    Filed: June 18, 2020
    Publication date: July 21, 2022
    Applicant: NANOSYS, INC.
    Inventors: Ashenafi Damtew MAMUYE, Christopher SUNDERLAND, Ilan JEN-LA PLANTE, Chunming WANG, John J. CURLEY, Nahyoung KIM, Ravisubhash TANGIRALA
  • Publication number: 20220195294
    Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.
    Type: Application
    Filed: February 3, 2021
    Publication date: June 23, 2022
    Applicant: Nanosys, Inc.
    Inventors: Ravisubhash TANGIRALA, Jay YAMANAGA, Wenzhou GUO, Christopher SUNDERLAND, Ashenafi Damtew MAMUYE, Chunming WANG, Eunhee HWANG, Nahyoung KIM
  • Patent number: 11360250
    Abstract: Disclosed are stable films comprising Ag, In, Ga, and S (AIGS) nanostructures, or more one metal alkoxides, one or more metal alkoxide hydrolysis products, one or more metal halides, one or more metal halide hydrolysis products, one or more organometallic compounds, or one or more organometallic hydrolysis products, or combinations thereof, and at least one ligand bound to the nanostructures. In some embodiments, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm. In some embodiments, the nanostructures have a photon conversion efficiency (PCE) of at least 30% after being stored for 24 hours under yellow light and air storage conditions.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: June 14, 2022
    Assignee: Nanosys, Inc.
    Inventors: Wenzhou Guo, Ravisubhash Tangirala, Chunming Wang, Charles Hotz, Alain Barron
  • Publication number: 20220098475
    Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising polythiol ligands with pendant moieties. The polythiol ligand with pendant moieties increase the solubility of the nanostructures in solvents and resins. The present invention also provides nanostructure films comprising the nanostructure compositions and methods of making nanostructure films using the nanostructure compositions.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 31, 2022
    Inventors: David OLMEIJER, Ravisubhash TANGIRALA, Austin SMITH
  • Patent number: 11267980
    Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising polyfunctional poly(alkylene oxide) ligands. The present invention also provides nanostructure films comprising the nanostructure compositions and methods of making nanostructure films using the nanostructure compositions.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: March 8, 2022
    Assignee: Nanosys, Inc.
    Inventors: Ravisubhash Tangirala, Austin Smith, Charles Hotz
  • Patent number: 11041071
    Abstract: The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one poly(alkylene oxide) ligand bound to the surface of the nanostructures, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: June 22, 2021
    Assignee: Nanosys, Inc.
    Inventors: Ravisubhash Tangirala, Shihai Kan, Jay Yamanaga, Charles Hotz, Donald Zehnder
  • Publication number: 20200347254
    Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising polyfunctional poly(alkylene oxide) ligands. The present invention also provides nanostructure films comprising the nanostructure compositions and methods of making nanostructure films using the nanostructure compositions.
    Type: Application
    Filed: October 24, 2018
    Publication date: November 5, 2020
    Applicant: Nanosys, Inc.
    Inventors: Ravisubhash TANGIRALA, Austin SMITH, Charles HOTZ
  • Publication number: 20190077954
    Abstract: The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one poly(alkylene oxide) ligand bound to the surface of the nanostructures, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.
    Type: Application
    Filed: August 16, 2018
    Publication date: March 14, 2019
    Applicant: Nanosys, Inc.
    Inventors: Ravisubhash Tangirala, Shihai Kan, Jay Yamanaga, Charles Hotz, Donald Zehnder
  • Patent number: 9341913
    Abstract: The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: May 17, 2016
    Assignee: The Regents of the University of California
    Inventors: Delia Milliron, Ravisubhash Tangirala, Anna Llordes, Raffaella Buonsanti, Guillermo Garcia
  • Patent number: 9287119
    Abstract: An embodiment of an inorganic nanocomposite includes a nanoparticle phase and a matrix phase. The nanoparticle phase includes nanoparticles that are arranged in a repeating structure. In an embodiment, the nanoparticles have a spherical or pseudo-spherical shape and are incompatible with hydrazine. In another embodiment, the nanoparticles have neither a spherical nor pseudo-spherical shape. The matrix phase lies between the nanoparticles of the nanoparticle phase. An embodiment of a method of making an inorganic nanocomposite of the present invention includes forming a nanoparticle superlattice on a substrate. The nanoparticle superlattice includes nanoparticles. Each nanoparticle has organic ligands attached to a surface of the nanoparticle. The organic ligands separate adjacent nanoparticles within the nanoparticle superlattice. The method also includes forming a solution that includes an inorganic precursor.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 15, 2016
    Assignee: The Regents of the University of California
    Inventors: Ravisubhash Tangirala, Delia J. Milliron, Anna Llordes
  • Publication number: 20150109652
    Abstract: The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.
    Type: Application
    Filed: August 21, 2012
    Publication date: April 23, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Delia Milliron, Ravisubhash Tangirala, Anna Llordes, Raffaella Buonsanti, Guillermo Garcia
  • Publication number: 20140322898
    Abstract: An embodiment of an inorganic nanocomposite includes a nanoparticle phase and a matrix phase. The nanoparticle phase includes nanoparticles that are arranged in a repeating structure. In an embodiment, the nanoparticles have a spherical or pseudo-spherical shape and are incompatible with hydrazine. In another embodiment, the nanoparticles have neither a spherical nor pseudo-spherical shape. The matrix phase lies between the nanoparticles of the nanoparticle phase. An embodiment of a method of making an inorganic nanocomposite of the present invention includes forming a nanoparticle superlattice on a substrate. The nanoparticle superlattice includes nanoparticles. Each nanoparticle has organic ligands attached to a surface of the nanoparticle. The organic ligands separate adjacent nanoparticles within the nanoparticle superlattice. The method also includes forming a solution that includes an inorganic precursor.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Inventors: Ravisubhash Tangirala, Delia J. Milliron, Anna Llordes
  • Publication number: 20120273719
    Abstract: An embodiment of an inorganic nanocomposite includes a nanoparticle phase and a matrix phase. The nanoparticle phase includes nanoparticles that are arranged in a repeating structure. In an embodiment, the nanoparticles have a spherical or pseudo-spherical shape and are incompatible with hydrazine. In another embodiment, the nanoparticles have neither a spherical nor pseudo-spherical shape. The matrix phase lies between the nanoparticles of the nanoparticle phase. An embodiment of a method of making an inorganic nanocomposite of the present invention includes forming a nanoparticle superlattice on a substrate. The nanoparticle superlattice includes nanoparticles. Each nanoparticle has organic ligands attached to a surface of the nanoparticle. The organic ligands separate adjacent nanoparticles within the nanoparticle superlattice. The method also includes forming a solution that includes an inorganic precursor.
    Type: Application
    Filed: April 13, 2012
    Publication date: November 1, 2012
    Applicant: The Regents of the University of California
    Inventors: Ravisubhash Tangirala, Delia J. Milliron, Anna Llordes