Patents by Inventor Ray D. Reid

Ray D. Reid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11448598
    Abstract: Methods, apparatus, and systems provide improved identification of selected biohazard and/or biohazard signatures from complex in vivo or in vitro samples and include deep UV native fluorescence spectroscopic analysis for multiple locations of a sample wherein classification results for individual locations are combined and spatially correlated to provide a positive or negative conclusion of biohazard signature presence (e.g., for signatures for viruses, bacteria, and diseases including SARS-CoV-2 and its variants and COVID-19 and its variants). Improvements include one or more of reduced sample processing time (minutes to fractions of a minute), reduced sampling cost (dollars to fractions of a dollar), high conclusion reliability (rivaling real time RT-PCR). Some embodiments may incorporate a stage or scanning mirror system to provide movement of a sample relative to an excitation exposure location. Some embodiments may incorporate Raman or phosphorescence spectroscopic analysis as well as imaging systems.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: September 20, 2022
    Assignee: Photon Systems, Inc.
    Inventors: Rohit Bhartia, Michael R. Reid, William F. Hug, Ray D. Reid
  • Patent number: 11262301
    Abstract: Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: March 1, 2022
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Rohit Bhartia, Ray D. Reid, Arthur L. Lane
  • Patent number: 10895533
    Abstract: Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: January 19, 2021
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Röhit Bhartia, Ray D. Reid, Arthur L. Lane
  • Patent number: 10890533
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: January 12, 2021
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Ray D. Reid, Rohit Bhartia, Arthur L. Lane
  • Patent number: 10753863
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: August 25, 2020
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Ray D. Reid, Rohit Bhartia, Arthur L. Lane
  • Patent number: 10598596
    Abstract: Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: March 24, 2020
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Rohit Bhartia, Ray D. Reid, Arthur L. Lane
  • Patent number: 9915603
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: March 13, 2018
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Ray D. Reid, Rohit Bhartia, Arthur L. Lane
  • Patent number: 9909990
    Abstract: Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 6, 2018
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Rohit Bhartia, Ray D. Reid, Arthur L. Lane
  • Patent number: 9568418
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: February 14, 2017
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Ray D. Reid, Rohit Bhartia, Arthur L. Lane
  • Patent number: 9442070
    Abstract: Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: September 13, 2016
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Rohit Bhartia, Ray D. Reid, Arthur L. Lane
  • Patent number: 8759791
    Abstract: Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter “badges” to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: June 24, 2014
    Assignee: Photon Systems, Inc.
    Inventors: William F. Hug, Rohit Bhartia, Ray D. Reid, Arthur L. Lane
  • Patent number: 8395770
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: March 12, 2013
    Assignee: Photon Systems
    Inventors: William F. Hug, Ray D. Reid, Rohit Bhartia
  • Patent number: 7800753
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: September 21, 2010
    Assignee: Photon Systems
    Inventors: William F. Hug, Ray D. Reid
  • Patent number: 7590161
    Abstract: Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: September 15, 2009
    Assignee: Photon Systems
    Inventors: William F. Hug, Ray D. Reid
  • Patent number: 7525653
    Abstract: Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: April 28, 2009
    Assignee: Photon Systems
    Inventors: William F. Hug, Ray D. Reid
  • Patent number: 6693944
    Abstract: Internal mirror sputtering metal ion lasers are disclosed which employ laser mirrors and a resonator internal to and integral with the laser plasma tube. Preferred lasers use silver, copper, gold and other metals individually or in combination as optically active materials and buffer gases of helium, neon, argon and other noble gases. Laser mirrors are utilized to enhance or reject selected combinations of emission wavelengths. Because of the rapid response time of these lasers, they may be employed as quasi-CW devices with laser output pulse widths ranging from a few microseconds to hundreds of microseconds and with very low input power ranging from a few watts to about 500 watts. The disclosed lasers approach the size, weight, power consumption, and cost of a helium-neon laser while providing quasi-continuous output up to hundreds of milliwatts at a wide range of wavelengths from about 200nm in the deep ultraviolet to about 2000nm in the middle infrared.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: February 17, 2004
    Inventors: William F. Hug, Ray D. Reid
  • Patent number: 6287869
    Abstract: Internal mirror sputtering metal ion lasers are disclosed which employ laser mirrors and a resonator internal to and integral with the laser plasma tube. Preferred lasers use silver, copper, gold and other metals individually or in combination as optically active materials and buffer gases of helium, neon, argon and other noble gases. Laser mirrors are utilized to enhance or reject selected combinations of emission wavelengths. Because of the rapid response time of these lasers, they may be employed as quasi-CW devices with laser output pulse widths ranging from a few microseconds to hundreds of microseconds and with very low input power ranging from a few watts to about 500 watts. The disclosed lasers approach the size, weight, power consumption, and cost of a helium-neon laser while providing quasi-continuous output up to hundreds of milliwatts at a wide range of wavelengths from about 200 nm in the deep ultraviolet to about 2000 nm in the middle infrared.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: September 11, 2001
    Inventors: William F. Hug, Ray D. Reid
  • Patent number: 5558884
    Abstract: A system for rapidly producing an integrated circuit on a substrate using a curable liquid capable of solidification to form a photo-resist pattern corresponding to an artwork representation of interconnections when subjected to ultra-violet light energy operates with a processor and computer aided design software. The system includes an x-y table, an electronically erasable mask, a drawing device and a projecting system. The substrate is disposed on the x-y table. The curable liquid lies in a solidification plane on the substrate. The electronically erasable mask is an ultra-violet wavelength isolating image buffer and is electrically coupled to the processor. The drawing device may be a back lighted liquid crystal display or a high resolution cathode ray tube or an infrared diode laser raster scanner and electronically draws an image of the artwork representation for the interconnections onto the electronically erasable mask.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: September 24, 1996
    Assignee: Omnichrome Corporation
    Inventors: William F. Hug, Ray D. Reid
  • Patent number: 5072338
    Abstract: An inspection/detection system for use in forensic applications includes a carrying case, a high intensity lamp assembly and a plurality of notch filters. The carrying case has a cover-lid and is a rectangular box with a closed end and an open end to which the cover-lid is hingedly coupled. The high intensity lamp assembly generates light energy of multiple wavelengths within the visible spectrum and infrared spectrum. The high intensity lamp assembly has an output aperture and is mounted within the carrying case. A power supply unit is mounted within the carrying case and energizes the high intensity lamp assembly in order to generate light energy therefrom. An optical connector is optically coupled to the output aperture of the high intensity lamp assembly. A flexible optical fiber cable is optically coupled to the optical connector.
    Type: Grant
    Filed: June 11, 1990
    Date of Patent: December 10, 1991
    Inventors: William F. Hug, Edwin A. Reed, Ray D. Reid
  • Patent number: 5026146
    Abstract: A system for rapidly producing a plastic part from a curable liquid which solidifies when subjected to ultra-violet light energy operates with a processor and computer aided design software. The system includes a receptacle and a moving mechanism which is electrically coupled to the processor. The receptacle stores the curable liquid part of which lies in a solidification plane. The system also includes an electronically erasable mask, a drawing device and a projecting system all of which are electrically coupled to the processor. The electronically erasable mask is an ultra-violet wavelength isolating image buffer. The drawing device may be a back lighted liquid crystal display or a high resolution cathode ray tube or an infrared diode laser raster scanner and electronically draws a plurality of images of successive cross-sectional laminae onto the electronically erasable mask.
    Type: Grant
    Filed: June 16, 1989
    Date of Patent: June 25, 1991
    Inventors: William F. Hug, Ray D. Reid