Patents by Inventor Ray F. Lee

Ray F. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130137971
    Abstract: A system and method perform magnetic resonance imaging (“MRI”) on more than one people simultaneously with one MRI scanner. The system may include a superconducting or non-superconducting magnet, a set of three dimensions of magnetic field gradients, RF coils, and magnetic field shimming coil set that can accommodate more than one people within one scanner. The system and method may be used for performing MRI on more than one interacting or non-interacting people for anatomic, functional, metabolic, and/or molecular imaging and studies.
    Type: Application
    Filed: January 24, 2013
    Publication date: May 30, 2013
    Inventor: Ray F. Lee
  • Patent number: 8368399
    Abstract: A method, apparatus and computer-readable medium are provided for generating a specified transmit magnetic field profile in the presence of an object. In particular, further transmitted magnetic field profiles are obtained in the presence of the object, where the further profiles correspond to modes associated with an array of conductive elements. In addition, weighting factors associated with the modes are calculated using the specific profile and further profiles. Further, the specified profile can be generated by applying signals to ports associated with the conductive elements, where the signals are based on the weighting factors.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: February 5, 2013
    Assignee: New York University
    Inventor: Ray F. Lee
  • Publication number: 20110306871
    Abstract: A system and method perform magnetic resonance imaging (“MRI”) on more than one people simultaneously with one MRI scanner. The system may include a superconducting or non-superconducting magnet, a set of three dimensions of magnetic field gradients, RF coils, and magnetic field shimming coil set that can accommodate more than one people within one scanner. The system and method may be used for performing MRI on more than one interacting or non-interacting people for anatomic, functional, metabolic, and/or molecular imaging and studies.
    Type: Application
    Filed: October 29, 2009
    Publication date: December 15, 2011
    Applicant: Ray F. Lee
    Inventor: Ray F. Lee
  • Patent number: 7876101
    Abstract: As the static magnetic field used in Magnetic Resonance Imaging (“MRI”) instruments increases the resonance frequency also increases. Consequently, the signal lost due to the coil becomes an issue. To compensate for this loss, it is possible to use an active device, such as a diode, a transistor, etc., with the radio frequency coil, MRI arrangement and method according to exemplary embodiments of the present invention to generate negative resistance to cancel the coil loss resistance. In this manner, the efficiency of the RF coil at high frequency can be improved.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: January 25, 2011
    Assignee: New York University
    Inventor: Ray F. Lee
  • Patent number: 7501825
    Abstract: Apparatus, process and a volume strip array can be provided, e.g., for use in connection with magnetic resonance imaging (“MRI”). The apparatus includes an arrangement adapted to transmit a signal to generate a magnetic field in a particular mode, and to receive a signal in response to the generated field in another mode. In particular, a plurality of parallel conductor strips are provided in a cylindrical configuration. The conductor strips are each adapted to receive current to generate a magnetic field. In addition, a cylindrical conductive shield can be provided which can include or allow the placement of the conductive strip. A plurality of ports may also be used, each of the ports interconnecting the conductive shield and at least one of the conductor strips. A control system may also be provided to tailor the properties of the conductive strips for particular applications.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: March 10, 2009
    Assignee: New York University
    Inventor: Ray F. Lee
  • Patent number: 7479784
    Abstract: Coil arrangements, systems, and methods are provided which are capable of facilitating information for imaging an anatomical structure. The arrangement may include two different coils. The first coil can produce a magnetic field in one direction and the second coil can produce a magnetic field in a second direction. The flux of the magnetic field of the first coil may be oriented at an angle other than zero and 180 degrees relative to the flux of the magnetic field of the second coil. In further exemplary embodiments, the coil elements may be in ring shapes. A shield may also be included in the arrangement and may be associate with the first and/or second coil. Connected to the coil arrangement may be a decoupling interface arrangement, which acts as an interface between the MRI scanner and the coil arrangement to decouple the coils.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: January 20, 2009
    Assignee: New York University
    Inventor: Ray F. Lee
  • Patent number: 7239142
    Abstract: A coil arrangement is provided that is configured to be used with a magnetic resonance imaging system. The arrangement can include a first coil element and a second coil element positioned adjacent to the first coil element. The second coil element may be different in size from the first coil element. The coil elements may be generally circular or rectangular in shape, or can have other shapes, and they may have different sizes from one another. In one exemplary embodiment, the coil elements overlap one another. In a further exemplary embodiment, three coil elements may be provided in an orientation such that a center coil is immediately adjacent to two outer coils, and the center coil element may be smaller than the outer coil elements. In still further exemplary embodiments, the coil elements may be configured in the form of a linear array or a two-dimensional array.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: July 3, 2007
    Assignee: New York University
    Inventors: Michael Robert Klieger, Ray F. Lee
  • Patent number: 6995561
    Abstract: A multiple channel array coil for magnetic resonance imaging (MRI) is disclosed. In an exemplary embodiment, the array coil includes a plurality of conductive strips formed within a dielectric medium. The conductive strips are further arranged into a generally cylindrical configuration, with each of the strips having a length (l), selected to cause each of the strips to serve as a resonator at a frequency corresponding to a proton MRI frequency. Thereby, the generally cylindrical configuration of conductive strips forms a multiple channel, volume resonator in which each of the strips is isolated from the remaining strips.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: February 7, 2006
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Eddy Benjamin Boskamp, Ray F. Lee
  • Patent number: 6771070
    Abstract: Featured is a device for detecting electromagnetic signals, more specifically, the magnetic resonance signals from excited nuclei as well as related apparatuses, systems and methods. The detection device includes a planar strip array antenna including a plurality, and in more particular embodiments a multiplicity of parallel conductors (e.g., 4, 16, 32 or more of conductors). The length of the conductors is adjusted to substantially reduce the coupling of a signal in one conductor to an adjacent conductor(s). In a more specific embodiment the length is set so as to be equal to be about n&lgr;/4, where n is an integer≧1 and &lgr; is the wavelength of the signal to be detected (e.g., the wavelength corresponding to the NMR resonance frequency for the nuclei). The device also is configured so that the electromagnetic wave on each conductor is one of a standing wave or a traveling wave.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: August 3, 2004
    Assignee: Johns Hopkins University
    Inventor: Ray F Lee
  • Publication number: 20030184293
    Abstract: A multiple channel array coil for magnetic resonance imaging (MRI) is disclosed. In an exemplary embodiment, the array coil includes a plurality of conductive strips formed within a dielectric medium. The conductive strips are further arranged into a generally cylindrical configuration, with each of the strips having a length (l), selected to cause each of the strips to serve as a resonator at a frequency corresponding to a proton MRI frequency. Thereby, the generally cylindrical configuration of conductive strips forms a multiple channel, volume resonator in which each of the strips is isolated from the remaining strips.
    Type: Application
    Filed: April 1, 2002
    Publication date: October 2, 2003
    Inventors: Eddy Benjamin Boskamp, Ray F. Lee
  • Publication number: 20020180439
    Abstract: Featured is a device for detecting electromagnetic signals, more specifically, the magnetic resonance signals from excited nuclei as well as related apparatuses, systems and methods. The detection device includes a planar strip array antenna including a plurality, and in more particular embodiments a multiplicity of parallel conductors (e.g., 4, 16, 32 or more of conductors). The length of the conductors is adjusted to substantially reduce the coupling of a signal in one conductor to an adjacent conductor(s). In a more specific embodiment the length is set so as to be equal to be about n&lgr;/4, where n is an integer>1 and &lgr; is the wavelength of the signal to be detected (e.g., the wavelength corresponding to the NMR resonance frequency for the nuclei). The device also is configured so that the electromagnetic wave on each conductor is one of a standing wave or a traveling wave.
    Type: Application
    Filed: March 30, 2001
    Publication date: December 5, 2002
    Applicant: Johns Hopkins University
    Inventor: Ray F. Lee
  • Patent number: 6476606
    Abstract: There is featured a method for parallel spatial encoding MR image data that is frequency-encoded and sensitivity-encoded that includes applying an analytical transform function to generate weighting coefficients for a given spatial harmonic order and detector index; generating linear combinations of the frequency-encoded and sensitivity-encoded MR image data to generate a set of spatial harmonics that can encode spatial frequencies; and applying at least a 1D Fourier transform to a k-space data set in which spatial frequency dimensions are fully encoded, thereby resulting in. an MR image of an observed object. The method includes synchronizing the MR image data signals to remove spatially-dependent phase errors using for example Fourier-Hilbert Transforms. The method yet further includes demodulating the modulation of generated high order harmonics. Also featured are systems, apparatuses and other processing methods.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: November 5, 2002
    Assignee: Johns Hopkins University
    Inventor: Ray F Lee
  • Publication number: 20010043068
    Abstract: There is featured a method for parallel spatial encoding MR image data that is frequency-encoded and sensitivity-encoded that includes applying an analytical transform function to generate weighting coefficients for a given spatial harmonic order and detector index; generating linear combinations of the frequency-encoded and sensitivity-encoded MR image data to generate a set of spatial harmonics that can encode spatial frequencies; and applying at least a 1D Fourier transform to a k-space data set in which spatial frequency dimensions are fully encoded, thereby resulting in an MR image of an observed object. The method includes synchronizing the MR image data signals to remove spatially-dependent phase errors using for example Fourier-Hilbert Transforms. The method yet further includes demodulating the modulation of generated high order harmonics. Also featured are systems, apparatuses and other processing methods.
    Type: Application
    Filed: December 1, 2000
    Publication date: November 22, 2001
    Applicant: Johns Hopkins University
    Inventor: Ray F. Lee