Patents by Inventor Ray Luan Nguyen
Ray Luan Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240243751Abstract: An Integrated Circuit (IC) includes one or more functional circuits of a given type, a test circuit including a selected one of the functional circuits or a replica circuit of the same type as the functional circuits, and an Adaptive Voltage Scaling (AVS) circuit. The AVS circuit is configured to determine a delay of the test circuit, and to adjust a supply voltage of the functional circuits in response to the determined delay of the test circuit.Type: ApplicationFiled: January 17, 2024Publication date: July 18, 2024Inventors: Benjamin Tomas Reyes, Gabriele Minoia, Ray Luan Nguyen
-
Patent number: 12009921Abstract: A high-speed data receiver includes interleaver circuitry configured to divide a received data stream into a plurality of interleaved paths for processing, spectral content detection circuitry configured to derive spectral content information from data on each of the plurality of interleaved paths, sorting circuitry configured to bin the derived spectral content information according to energy levels, stream attribute determination circuitry configured to determine, based on sorted spectral content, one or more of path offsets of the interleaved paths, gain mismatch among interleaved paths, signal bandwidth mismatch and pulse width mismatch, and equalization circuitry configured to correct the one or more of the determined offsets, the determined gain mismatch and the determined signal width mismatch.Type: GrantFiled: July 20, 2022Date of Patent: June 11, 2024Assignee: Marvell Asia Pte LtdInventors: Ray Luan Nguyen, Dawood Alam, Nong Fan, Geoffrey Hatcher, Morteza Azarmnia
-
Publication number: 20240162928Abstract: Transceiver circuitry in an integrated circuit device includes a receive path including an analog front end for receiving analog signals from an analog transmission path and conditioning the analog signals, and an analog-to-digital converter configured to convert the conditioned analog signals into received digital signals for delivery to functional circuitry, and a transmit path including a digital front end configured to accept digital signals from the functional circuitry and to condition the accepted digital signals, and a digital-to-analog converter configured to convert the conditioned digital signals into analog signals for transmission onto the analog transmission path. At least one of the analog front end and the digital front end introduces distortion and outputs a distorted conditioned signal.Type: ApplicationFiled: January 4, 2024Publication date: May 16, 2024Inventors: Ray Luan Nguyen, Benjamin Tomas Reyes, Geoffrey Hatcher, Stephen Jantzi
-
Patent number: 11901925Abstract: Transceiver circuitry in an integrated circuit device includes a receive path including an analog front end for receiving analog signals from an analog transmission path and conditioning the analog signals, and an analog-to-digital converter configured to convert the conditioned analog signals into received digital signals for delivery to functional circuitry, and a transmit path including a digital front end configured to accept digital signals from the functional circuitry and to condition the accepted digital signals, and a digital-to-analog converter configured to convert the conditioned digital signals into analog signals for transmission onto the analog transmission path. At least one of the analog front end and the digital front end introduces distortion and outputs a distorted conditioned signal.Type: GrantFiled: July 20, 2022Date of Patent: February 13, 2024Assignee: Marvell Asia Pte LtdInventors: Ray Luan Nguyen, Benjamin Tomas Reyes, Geoffrey Hatcher, Stephen Jantzi
-
Publication number: 20230402987Abstract: An analog front-end (AFE) device and method for a high baud-rate receiver. The device can include an input matching network coupled to a first buffer device, which is coupled to a sampler array. The input matching network can include a first T-coil configured to receive a first input and a second T-coil configured to receive a second input. The first buffer device can include one or more buffers each having a bias circuit coupled to a first class-AB source follower and a second class-AB source follower. The sampling array can include a plurality of sampler devices configured to receive a multi-phase clocking signal. Additional optimization techniques can be used, such as having a multi-tiered sampler array and having the first buffer device configured with separate buffers for odd and even sampling phases. Benefits of this AFE configuration can include increased bandwidth, sampling rate, and power efficiency.Type: ApplicationFiled: August 22, 2023Publication date: December 14, 2023Inventors: Stephane DALLAIRE, Ray Luan NGUYEN, Geaffrey HATCHER
-
Patent number: 11750166Abstract: An analog front-end (AFE) device and method for a high baud-rate receiver. The device can include an input matching network coupled to a first buffer device, which is coupled to a sampler array. The input matching network can include a first T-coil configured to receive a first input and a second T-coil configured to receive a second input. The first buffer device can include one or more buffers each having a bias circuit coupled to a first class-AB source follower and a second class-AB source follower. The sampling array can include a plurality of sampler devices configured to receive a multi-phase clocking signal. Additional optimization techniques can be used, such as having a multi-tiered sampler array and having the first buffer device configured with separate buffers for odd and even sampling phases. Benefits of this AFE configuration can include increased bandwidth, sampling rate, and power efficiency.Type: GrantFiled: January 13, 2021Date of Patent: September 5, 2023Assignee: Marvell Asia Pte. Ltd.Inventors: Stephane Dallaire, Ray Luan Nguyen, Geoffrey Hatcher
-
Patent number: 11750207Abstract: A multi-instance time-interleaving (TI) system and method of operation therefor. The system includes a plurality of TI devices, each with a plurality of clock generation units (CGUs) coupled to an interleaver network. Within each TI device, the plurality of CGUs provides a plurality of clock signals needed by the interleaver network. A phase detector device is coupled to the plurality of TI devices and configured to determine any phase differences between the clock signals of a designated reference TI device and the corresponding clock signals of each other TI device. To determine the phase differences, the phase detector can use a logic comparator configuration, a time-to-digital converter (TDC) configuration, or an auto-correlation configuration. The phases of the clock signals of each other TI device can be aligned to the reference TI device using internal phase control, retimers, delay cells, finite state machines, or the like.Type: GrantFiled: April 18, 2022Date of Patent: September 5, 2023Assignee: Marvell Asia Pte Ltd.Inventors: Ray Luan Nguyen, Geoffrey Hatcher
-
Publication number: 20230036435Abstract: Transceiver circuitry in an integrated circuit device includes a receive path including an analog front end for receiving analog signals from an analog transmission path and conditioning the analog signals, and an analog-to-digital converter configured to convert the conditioned analog signals into received digital signals for delivery to functional circuitry, and a transmit path including a digital front end configured to accept digital signals from the functional circuitry and to condition the accepted digital signals, and a digital-to-analog converter configured to convert the conditioned digital signals into analog signals for transmission onto the analog transmission path. At least one of the analog front end and the digital front end introduces distortion and outputs a distorted conditioned signal.Type: ApplicationFiled: July 20, 2022Publication date: February 2, 2023Inventors: Ray Luan Nguyen, Benjamin Tomas Reyes, Geoffrey Hatcher, Stephen Jantzi
-
Publication number: 20230035036Abstract: A high-speed data receiver includes interleaver circuitry configured to divide a received data stream into a plurality of interleaved paths for processing, spectral content detection circuitry configured to derive spectral content information from data on each of the plurality of interleaved paths, sorting circuitry configured to bin the derived spectral content information according to energy levels, stream attribute determination circuitry configured to determine, based on sorted spectral content, one or more of path offsets of the interleaved paths, gain mismatch among interleaved paths, signal bandwidth mismatch and pulse width mismatch, and equalization circuitry configured to correct the one or more of the determined offsets, the determined gain mismatch and the determined signal width mismatch.Type: ApplicationFiled: July 20, 2022Publication date: February 2, 2023Inventors: Ray Luan Nguyen, Dawood Alam, Nong Fan, Geoffrey Hatcher, Morteza Azarmnia
-
Patent number: 11507129Abstract: A multi-layer time-interleaving (TI) device and method of operation therefor. This device includes a plurality of TI layers configured to receive a plurality of input clock signals and to output a plurality of output clock signals, each of which can be configured to drive subsequent devices. The layers include at least a first and second layer including a fine-grain propagation device and a barrel-shifting propagation device configured to retime the plurality of input clock signals to produce divided output clock signals. The device can include additional barrel-shifting propagation devices to time interleave an initial two layers to produce one or more additional layers. Using negative phase stepping, the plurality of output clock signals is produced with optimal timing margin and synchronized on a single clock edge.Type: GrantFiled: October 19, 2021Date of Patent: November 22, 2022Assignee: MARVELL ASIA PTE LTD.Inventors: Ray Luan Nguyen, Geoffrey O. Hatcher
-
Publication number: 20220271766Abstract: A multi-instance time-interleaving (TI) system and method of operation therefor. The system includes a plurality of TI devices, each with a plurality of clock generation units (CGUs) coupled to an interleaver network. Within each TI device, the plurality of CGUs provides a plurality of clock signals needed by the interleaver network. A phase detector device is coupled to the plurality of TI devices and configured to determine any phase differences between the clock signals of a designated reference TI device and the corresponding clock signals of each other TI device. To determine the phase differences, the phase detector can use a logic comparator configuration, a time-to-digital converter (TDC) configuration, or an auto-correlation configuration. The phases of the clock signals of each other TI device can be aligned to the reference TI device using internal phase control, retimers, delay cells, finite state machines, or the like.Type: ApplicationFiled: April 18, 2022Publication date: August 25, 2022Inventors: Ray Luan NGUYEN, Geoffrey HATCHER
-
Publication number: 20220224302Abstract: An analog front-end (AFE) device and method for a high baud-rate receiver. The device can include an input matching network coupled to a first buffer device, which is coupled to a sampler array. The input matching network can include a first T-coil configured to receive a first input and a second T-coil configured to receive a second input. The first buffer device can include one or more buffers each having a bias circuit coupled to a first class-AB source follower and a second class-AB source follower. The sampling array can include a plurality of sampler devices configured to receive a multi-phase clocking signal. Additional optimization techniques can be used, such as having a multi-tiered sampler array and having the first buffer device configured with separate buffers for odd and even sampling phases. Benefits of this AFE configuration can include increased bandwidth, sampling rate, and power efficiency.Type: ApplicationFiled: January 13, 2021Publication date: July 14, 2022Inventors: Stephane DALLAIRE, Ray Luan NGUYEN, Geoffrey HATCHER
-
Publication number: 20220155813Abstract: A multi-layer time-interleaving (TI) device and method of operation therefor. This device includes a plurality of TI layers configured to receive a plurality of input clock signals and to output a plurality of output clock signals, each of which can be configured to drive subsequent devices. The layers include at least a first and second layer including a fine-grain propagation device and a barrel-shifting propagation device configured to retime the plurality of input clock signals to produce divided output clock signals. The device can include additional barrel-shifting propagation devices to time interleave an initial two layers to produce one or more additional layers. Using negative phase stepping, the plurality of output clock signals is produced with optimal timing margin and synchronized on a single clock edge.Type: ApplicationFiled: October 19, 2021Publication date: May 19, 2022Inventors: Ray Luan NGUYEN, Geoffrey O. Hatcher
-
Patent number: 11309904Abstract: A multi-instance time-interleaving (TI) system and method of operation therefor. The system includes a plurality of TI devices, each with a plurality of clock generation units (CGUs) coupled to an interleaver network. Within each TI device, the plurality of CGUs provides a plurality of clock signals needed by the interleaver network. A phase detector device is coupled to the plurality of TI devices and configured to determine any phase differences between the clock signals of a designated reference TI device and the corresponding clock signals of each other TI device. To determine the phase differences, the phase detector can use a logic comparator configuration, a time-to-digital converter (TDC) configuration, or an auto-correlation configuration. The phases of the clock signals of each other TI device can be aligned to the reference TI device using internal phase control, retimers, delay cells, finite state machines, or the like.Type: GrantFiled: February 24, 2021Date of Patent: April 19, 2022Assignee: Marvell Asia Pte Ltd.Inventors: Ray Luan Nguyen, Geoffrey Hatcher
-
Patent number: 11157037Abstract: A multi-layer time-interleaving (TI) device and method of operation therefor. This device includes a plurality of TI layers configured to receive a plurality of input clock signals and to output a plurality of output clock signals, each of which can be configured to drive subsequent devices. The layers include at least a first and second layer including a fine-grain propagation device and a barrel-shifting propagation device configured to retime the plurality of input clock signals to produce divided output clock signals. The device can include additional barrel-shifting propagation devices to time interleave an initial two layers to produce one or more additional layers. Using negative phase stepping, the plurality of output clock signals is produced with optimal timing margin and synchronized on a single clock edge.Type: GrantFiled: November 13, 2020Date of Patent: October 26, 2021Assignee: MARVELL ASIA PTE, LTD.Inventors: Ray Luan Nguyen, Geoffrey O. Hatcher