Patents by Inventor Raymond G. Snider

Raymond G. Snider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9422828
    Abstract: A structural layer (30) may be bi-cast onto ligaments (62) extending from a porous cooling construction (20). The material of the structural layer may be optimized for high-temperature strength, while the material of the porous construction may be optimized for high thermal conductivity. A fugitive material (56) such as wax may be formed on the ligaments of the porous construction. A second fugitive material (58) such as ceramic may fill the remaining part of the porous construction. An investment casting shell (60) may be disposed around the porous construction and the fugitive materials. The first fugitive material may then be replaced with the material of the structural layer (30), and the second fugitive material may be removed to provide coolant paths (26). A second structural layer (52) may be bi-cast onto further ligaments (62) on a second side of the porous construction.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: August 23, 2016
    Inventors: Jay A. Morrison, Raymond G. Snider, Allister W. James
  • Publication number: 20140342175
    Abstract: A structural layer (30) may be bi-cast onto ligaments (62) extending from a porous cooling construction (20). The material of the structural layer may be optimized for high-temperature strength, while the material of the porous construction may be optimized for high thermal conductivity. A fugitive material (56) such as wax may be formed on the ligaments of the porous construction. A second fugitive material (58) such as ceramic may fill the remaining part of the porous construction. An investment casting shell (60) may be disposed around the porous construction and the fugitive materials. The first fugitive material may then be replaced with the material of the structural layer (30), and the second fugitive material may be removed to provide coolant paths (26). A second structural layer (52) may be bi-cast onto further ligaments (62) on a second side of the porous construction.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Inventors: Jay A. Morrison, Raymond G. Snider, Allister W. James
  • Patent number: 8793871
    Abstract: A structural layer (30) may be bi-cast onto ligaments (62) extending from a porous cooling construction (20). The material of the structural layer may be optimized for high-temperature strength, while the material of the porous construction may be optimized for high thermal conductivity. A fugitive material (56) such as wax may be formed on the ligaments of the porous construction. A second fugitive material (58) such as ceramic may fill the remaining part of the porous construction. An investment casting shell (60) may be disposed around the porous construction and the fugitive materials. The first fugitive material may then be replaced with the material of the structural layer (30), and the second fugitive material may be removed to provide coolant paths (26). A second structural layer (52) may be bi-cast onto further ligaments (62) on a second side of the porous construction.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: August 5, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Jay A. Morrison, Raymond G. Snider, Allister W. James
  • Patent number: 8727714
    Abstract: A method of forming and/or assembling a multi-panel outer wall (14) for a component (12) in a machine subjected to high thermal stresses comprising providing such a component (12) that includes an inner panel wall (16) having an outer surface, and an array of interconnecting ribs (38) on the outer surface of the component (12). An intermediate panel (22) is provided and preferably preformed to a general outer contour of the component (12), and is positioned over the inner panel (16). An external pressure force is applied across a surface area of the intermediate panel (22) against the outer surface of the component (12) to contour the intermediate panel (22) according to a geometric configuration formed by the ribs (38) thereby forming cooling chambers (24) between the outer surface and ribs (38) of the component (12) and the intermediate panel (22).
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 20, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Raymond G. Snider, Jay A. Morrison
  • Patent number: 8714920
    Abstract: A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 6, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Christian X. Campbell, Jay A. Morrison, Allister W. James, Raymond G. Snider, Daniel M. Eshak, John J. Marra, Brian J. Wessell
  • Publication number: 20120275900
    Abstract: A method of forming and/or assembling a multi-panel outer wall (14) for a component (12) in a machine subjected to high thermal stresses comprising providing such a component (12) that includes an inner panel wall (16) having an outer surface, and an array of interconnecting ribs (38) on the outer surface of the component (12). An intermediate panel (22) is provided and preferably preformed to a general outer contour of the component (12), and is positioned over the inner panel (16). An external pressure force is applied across a surface area of the intermediate panel (22) against the outer surface of the component (12) to contour the intermediate panel (22) according to a geometric configuration formed by the ribs (38) thereby forming cooling chambers (24) between the outer surface and ribs (38) of the component (12) and the intermediate panel (22).
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Inventors: Raymond G. Snider, Jay A. Morrison
  • Publication number: 20120237786
    Abstract: A structural layer (30) may be bi-cast onto ligaments (62) extending from a porous cooling construction (20). The material of the structural layer may be optimized for high-temperature strength, while the material of the porous construction may be optimized for high thermal conductivity. A fugitive material (56) such as wax may be formed on the ligaments of the porous construction. A second fugitive material (58) such as ceramic may fill the remaining part of the porous construction. An investment casting shell (60) may be disposed around the porous construction and the fugitive materials. The first fugitive material may then be replaced with the material of the structural layer (30), and the second fugitive material may be removed to provide coolant paths (26). A second structural layer (52) may be bi-cast onto further ligaments (62) on a second side of the porous construction.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 20, 2012
    Inventors: Jay A. Morrison, Raymond G. Snider, Allister W. James
  • Publication number: 20110243724
    Abstract: A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 6, 2011
    Inventors: Christian X. Campbell, Jay A. Morrison, Allister W. James, Raymond G. Snider, Daniel M. Eshak, John J. Marra, Brian J. Wessell
  • Patent number: 5330711
    Abstract: A nickel-base casting alloy for use in gas turbine components consists essentially of the composition (in weight percent): carbon 0.02-0.15, chromium 14-18, cobalt 8-12, aluminum 0.5-1.5, titanium 2.0-3.5, niobium 3.5-6.0, tantalum 1.0-2.0, tungsten 1.0-3.0, molybdenum 3.0-6.0, boron 0.002-0.05, zirconium 0.01-0.1, balance nickel and incidental impurities. The alloy is characterized by a volume fraction of gamma prime of about 32%, an ultimate tensile strength in the range 990-1010 MPa over the temperature range 550.degree.-750.degree. C., and a mean coefficient of linear thermal expansion in the range 11.5-15.0 alpha(*E-06/.degree.C.).
    Type: Grant
    Filed: September 29, 1992
    Date of Patent: July 19, 1994
    Assignee: Rolls-Royce plc
    Inventor: Raymond G. Snider