Patents by Inventor Raymond Green

Raymond Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968255
    Abstract: A group definition is received via a network interface. Communications are transmitted to destinations, the communications comprising an invitation to associate with the a content sharing group. Authentication data associated with users that accept the invention is encrypted. The accepting users are associated with the content sharing group. A content gallery definition is received. A communication is received that the content gallery is to be shared with the content sharing group. The content gallery is caused to be instantiated on devices of users associated with the group. A content request for the content sharing group is received and the content request is transmitted accordingly to users associated with the group. A content item is received in response the request and the content item is transmitted to user devices associated with the group and enabled to appear in instantiations of the content gallery on the user devices.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: April 23, 2024
    Assignee: Greenfly, Inc.
    Inventors: Shawn David Green, Daniel Brian Kirschner, Marshall Raymond Greer, III
  • Publication number: 20240068691
    Abstract: A heating, ventilation, and/or air conditioning (HVAC) system in accordance with present embodiments includes a housing, one or more sensing units disposed within the housing, and a controller disposed within the housing. The controller is operable to communicate with the one or more sensing units through a wireless communication link to receive sensed data, and analyze the sensed data by applying one or more data processing techniques.
    Type: Application
    Filed: August 30, 2023
    Publication date: February 29, 2024
    Inventors: Kyle Christian, Randy Raymond Koivisto, Micah Taylor Green
  • Publication number: 20230386812
    Abstract: A method of mass spectrometry is disclosed comprising: a) providing temporally separated precursor ions; b) mass analyzing separated precursor ions, and/or product ions derived therefrom, during a plurality of sequential acquisition periods, wherein the value of an operational parameter of the spectrometer is varied during the different acquisition periods; c) storing the spectral data obtained in each acquisition period along with its respective value of the operational parameter; d) interrogating the stored spectral data and determining which of the spectral data for a precursor ion or product ions meets a predetermined criterion, and determining the value of the operational parameter that provides this mass spectral data as a target operational parameter value; and e) mass analyzing again the precursor or product ions whilst the operational parameter is set to the target operational parameter value.
    Type: Application
    Filed: June 2, 2023
    Publication date: November 30, 2023
    Applicant: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose, Keith Richardson
  • Patent number: 11823882
    Abstract: A method of mass spectrometry comprising the steps of: providing a library of background ion data including m/z data for multiple background ions in respect of different chromatographic conditions including a change of solvent composition from aqueous (1) to organic (3), chromatographically separating a sample containing analyte components, wherein the chromatographic separation is performed under a chromatographic condition in respect of which background ion data is provided in the library, analysing the sample to obtain sample data comprising m/z values for the sample components as a function of retention time (RT), and calculating one or more error values including ppm error as a function of retention time based on a comparison between background ions identified in the sample data and the library of background ion data. Outliers (4), corrupted measurements and inconsistent measurements at specific retention times are rejected.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 21, 2023
    Assignee: Micromass UK Limited
    Inventor: Martin Raymond Green
  • Patent number: 11817300
    Abstract: A method of encoding a parent or precursor ion beam to aid product ion assignment is disclosed. According to an embodiment the energy of parent ions entering a collision cell 3 is progressively increased. Different species of parent ions fragment at different collision energies. Fragment ion intensity profiles are matched with parent ion intensity profiles to correlate fragment ions with corresponding parent ions.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 14, 2023
    Assignee: Micromass UK Limited
    Inventors: Kevin Giles, Martin Raymond Green, Keith Richardson, Jason Lee Wildgoose
  • Publication number: 20230349859
    Abstract: An instrument for analysing ions is disclosed comprising: a first device (4) configured to onwardly transmit ions having a restricted range of physicochemical property values at any given time, and to change said range with time such that the first device (4) is capable of transmitting ions having different physicochemical property values at different times; and an ion mobility separator (6) arranged to receive ions transmitted by the first device (4); wherein the instrument is configured such that the time that any given ion enters the ion mobility separator (6) and begins to be separated from other ions is defined by its time of transmission by the first device.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 2, 2023
    Applicant: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose, Steven Derek Pringle, Keith Richardson, Kevin Giles
  • Publication number: 20230343575
    Abstract: A method of separating ions is disclosed comprising: providing an ion separation device comprising a plurality of electrodes; providing a gas flow (5) so as to urge ions in a first direction along the device; applying voltages to said electrodes so that a plurality of travelling potentials (4) urge the ions in a second opposite direction; and varying at least one operational parameter of the travelling potentials (4) as a function of position along the device such that ions of different mobility or mass to charge ratio become trapped at different locations along the device.
    Type: Application
    Filed: July 3, 2023
    Publication date: October 26, 2023
    Applicant: Micromass UK Limited
    Inventors: Martin Raymond Green, Keith George Richardson
  • Publication number: 20230296561
    Abstract: A method of analysing ions is disclosed comprising: (i) subjecting ions of an analyte molecule to different activation levels at different times so as to cause the ions to have different mobilities at said different times, wherein the activation level is varied in a plurality of cycles, and wherein the activation level is varied between said different levels during each of the cycles. The method uses an ion mobility separator or scanned ion mobility filter to determine the mobilities of the ions for said different activation levels; and correlates the determined mobilities with their respective activation levels so as to thereby obtain a fingerprint for the analyte molecule.
    Type: Application
    Filed: August 4, 2021
    Publication date: September 21, 2023
    Applicant: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose
  • Patent number: 11733206
    Abstract: The present disclosure provides a method comprising providing a sample to be analysed, separating successive populations of ions from said sample in a separator, wherein said populations of ions are introduced into said separator at regular intervals, and the intervals are timed such that at least some ions in a subsequent population of ions overlap ions in a preceding population of ions, varying one or more parameters of said separator such that different populations of ions experience different separation conditions, detecting ions from said populations of ions and obtaining a convolved data set, and deĀ¬ convolving said convolved data set using the known variance of the parameters and outputting data corresponding to the successive populations of ions.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: August 22, 2023
    Assignee: Micromass UK Limited
    Inventor: Martin Raymond Green
  • Patent number: 11705317
    Abstract: A method of mass spectrometry is disclosed comprising: a) providing temporally separated precursor ions; b) mass analyzing separated precursor ions, and/or product ions derived therefrom, during a plurality of sequential acquisition periods, wherein the value of an operational parameter of the spectrometer is varied during the different acquisition periods; c) storing the spectral data obtained in each acquisition period along with its respective value of the operational parameter; d) interrogating the stored spectral data and determining which of the spectral data for a precursor ion or product ions meets a predetermined criterion, and determining the value of the operational parameter that provides this mass spectral data as a target operational parameter value; and e) mass analyzing again the precursor or product ions whilst the operational parameter is set to the target operational parameter value.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: July 18, 2023
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose, Keith Richardson
  • Publication number: 20230154738
    Abstract: A method of mass spectrometry is disclosed in which one or more AC excitation voltage waveforms are applied to electrodes of an ion guide to radially excite and thereby attenuate ions having mass to charge ratios within respective mass to charge ratio windows. The AC excitation voltage waveforms are varied with time such that ions having different mass to charge ratios are attenuated with different attenuation time profiles. Plural AC excitation voltage waveforms may be varied with time to provide unique mass to charge ratio encoding.
    Type: Application
    Filed: March 29, 2021
    Publication date: May 18, 2023
    Applicant: Micromass UK Limited
    Inventors: Martin Raymond Green, Keith George Richardson
  • Publication number: 20220384168
    Abstract: A method of mass spectrometry is disclosed comprising: a step (10) of analysing a reference compound in a first mass spectrometer and outputting mass spectral data in response thereto; a step (20) of analysing the reference compound in a second, different mass spectrometer and outputting mass spectral data in response thereto; and a step (30) of automatically adjusting an operational parameter, duty cycle (e.g. duty cycle of data acquisition), or acquired spectral data of at least one mass spectrometer such that, for the same (given) consumption of reference compound by the spectrometer, the statistical precision of quantification (the number of detected ions) and/or of mass measurement (the mass resolution) by the mass spectrometer is substantially the same as that of the other mass spectrometer. A similar method of ion mobility spectrometry is disclosed.
    Type: Application
    Filed: October 6, 2020
    Publication date: December 1, 2022
    Applicant: Micromass UK Limited
    Inventors: Jason Lee Wildgoose, Martin Raymond Green, Keith Richardson, Daniel James Kenny, David Gordon, Kate Whyatt
  • Publication number: 20220367162
    Abstract: A method is disclosed comprising: trapping ions in an ion trap (40); applying a first force on the ions within the ion trap in a first direction, said force having a magnitude that is dependent upon the value of a physicochemical property of the ions; applying a second force on these ions in the opposite direction so that the ions separate according to the physicochemical property value as a result of the first and second forces; and then pulsing or driving ions out of one or more regions of the ion trap.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Applicant: Micromass UK Limited
    Inventors: Jason Lee Wildgoose, Keith Richardson, David J. Langridge, Martin Raymond Green, Steven Derek Pringle
  • Publication number: 20220351954
    Abstract: A method of mass spectrometry comprising the steps of: providing a library of background ion data including m/z data for multiple background ions in respect of different chromatographic conditions including a change of solvent composition from aqueous (1) to organic (3), chromatographically separating a sample containing analyte components, wherein the chromatographic separation is performed under a chromatographic condition in respect of which background ion data is provided in the library, analysing the sample to obtain sample data comprising m/z values for the sample components as a function of retention time (RT), and calculating one or more error values including ppm error as a function of retention time based on a comparison between background ions identified in the sample data and the library of background ion data. Outliers (4), corrupted measurements and inconsistent measurements at specific retention times are rejected.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 3, 2022
    Applicant: Micromass UK Limited
    Inventor: Martin Raymond Green
  • Patent number: 11488815
    Abstract: A method of mass and/or ion mobility spectrometry is disclosed that comprises accumulating ions for a first period of time (T1) one or more times so as to form one or more first groups of ions, accumulating ions for a second period of time (T2) one or more times so as to form one or more second groups of ions, wherein the second period of time (T2) is less that the first period of time (T1), analysing the one or more first groups of ions to generate one or more first data sets, analysing the one or more second groups of ions to generate one or more second data sets, and determining whether the one or more first data sets comprise saturated and/or distorted data. If it is determined that the one or more first data sets comprise saturated and/or distorted data, then the method further comprises replacing the saturated and/or distorted data from the one or more first data sets with corresponding data from the one or more second data sets.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: November 1, 2022
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose, Steven Derek Pringle, Kevin R. Howes
  • Patent number: 11476104
    Abstract: An ion detection system is disclosed that comprises one or more first devices 11 configured to produce secondary electrons in response to incident ions. The one or more first devices 11 comprise a first ion collection region and a second ion collection region and are configured to produce first secondary electrons in response to one or more ions incident at the first ion collection region and to produce second secondary electrons in response to one or more ions incident at the second ion collection region. The ion detection system also comprises a first output device 14 configured to output a first signal in response to first secondary electrons produced by the one or more first devices 11 and a second output device 15 configured to output a second signal in response to second secondary electrons produced by the one or more first devices 11.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: October 18, 2022
    Assignee: Micromass UK Limited
    Inventors: Martin Raymond Green, Jason Lee Wildgoose
  • Publication number: 20220301838
    Abstract: A method of correcting mass spectral data comprises making calibration measurements of first intrinsic components (A, B, C) at one or more calibration times (t1) using calibrants which have known mass to charge ratio (m/z) values or previously mass measured mass to charge ratio (m/z) values, making a list of second intrinsic components (D, E, F) which are present during more than one acquisition periods, wherein the second intrinsic components have mass to charge ratio (m/z) values that were not present or observed during or close to the one or more calibration times (t1) but which do overlap in time with the first intrinsic components (A, B, C), and utilising the list to calculate a mass or mass to charge ratio (m/z) correction factor for one or more acquisition periods which are not close or adjacent in time to an acquisition period containing a directly calibrated mass to charge ratio (m/z) value.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 22, 2022
    Inventors: Keith George RICHARDSON, Martin Raymond GREEN, John Brian HOYES, Richard DENNY, Peter NIXON, Richard CHAPMAN
  • Patent number: 11450517
    Abstract: A method is disclosed comprising: trapping ions in an ion trap (40); applying a first force on the ions within the ion trap in a first direction, said force having a magnitude that is dependent upon the value of a physicochemical property of the ions; applying a second force on these ions in the opposite direction so that the ions separate according to the physicochemical property value as a result of the first and second forces; and then pulsing or driving ions out of one or more regions of the ion trap.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: September 20, 2022
    Assignee: Micromass UK Limited
    Inventors: Jason Lee Wildgoose, Keith Richardson, David J. Langridge, Martin Raymond Green, Steven Derek Pringle
  • Patent number: 11415547
    Abstract: A method of filtering ions according to their ion mobility using a device is disclosed, the method comprising a plurality of electrodes and one or more voltage source(s) arranged and adapted to apply voltages to the plurality of electrodes, the method comprising, generating using the one or more voltage source(s) one or more local separation region(s), wherein ions can be separated within each local separation region according to their ion mobility, and moving each local separation region axially along the device with a certain velocity such that, for each local separation region, ions having a value of their ion mobility falling within a selected range are transmitted axially along the device with that local separation region whereas ions having higher and/or lower ion mobility falling outside that range escape the local separation region, wherein any ions that escape the local separation region(s) are removed from within the device and/or otherwise kept apart from those ions falling within the selected rang
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: August 16, 2022
    Assignee: Micromass UK Limited
    Inventors: David J. Langridge, Jason Lee Wildgoose, Martin Raymond Green, Daniel James Kenny, Kevin Giles, Steven Derek Pringle
  • Publication number: 20220230867
    Abstract: A method of mass filtering ions is disclosed comprising: providing a first, AC-only, mass filter (2); providing a second mass filter (4) downstream of the first mass filter; applying a first AC voltage (8) to electrodes of the first mass filter so as to radially confine ions between the electrodes, and applying a second AC voltage (10) between electrodes of the first mass filter (2) so as to radially excite some of said ions such that these ions are not transmitted; and using the second mass filter (4) to mass filter ions; wherein at any given time the second mass filter (4) only transmits ions having a first range of mass to charge ratios and filters out all other ions; and wherein the step of applying the at least one second AC voltage (10) to electrodes of the first mass filter (2) radially excites ions such that at least some ions having mass to charge ratios above said first range are not transmitted into the second mass filter.
    Type: Application
    Filed: May 6, 2020
    Publication date: July 21, 2022
    Applicant: Micromass UK Limited
    Inventors: Martin Raymond Green, David J. Langridge