Patents by Inventor Raymond J. Ziegler

Raymond J. Ziegler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160149230
    Abstract: Processes for forming films comprising multiple layers of nanostructured support elements are described. A first layer of nanostructured support elements is formed by depositing a base material on a substrate and annealing. Further growth of the first layer of nanostructures is then inhibited. Additional layers of nanostructured support elements may be grown on the first layer of nanostructures through additional deposition and annealing steps. The multilayer films provide increased surface area and are particularly useful in devices where catalyst activity is related to the surface area available to support catalyst particles.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 26, 2016
    Inventors: Mark K. Debe, Raymond J. Ziegler, Susan M. Hendricks
  • Patent number: 6613106
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: September 2, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Publication number: 20030041444
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Application
    Filed: August 5, 2002
    Publication date: March 6, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6432571
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: August 13, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6428584
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: August 6, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6319293
    Abstract: A membrane electrode assembly is provided comprising an ion conducting membrane and one or more electrode layers that comprise nanostructured elements, wherein the nanostructured elements are in incomplete contact with the ion conducting membrane. This invention also provides methods to make the membrane electrode assembly of the invention. The membrane electrode assembly of this invention is suitable for use in electrochemical devices, including proton exchange membrane fuel cells, electrolyzers, chlor-alkali separation membranes, and the like.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: November 20, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Richard J. Poirier, Michael K. Wackerfuss, Raymond J. Ziegler
  • Patent number: 6183668
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: February 6, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6040077
    Abstract: Nanostructured elements are provided for use in the electrode of a membrane electrode assembly for use in fuel cells, sensors, electrochemical cells, and the like. The nanostructured elements comprise acicular microstructured support whiskers bearing acicular nanoscopic catalyst particles which may comprise alternating layers of catalyst materials, which may comprise a surface layer that differs in composition from the bulk composition of the catalyst particles, and which may demonstrate improved carbon monoxide tolerance.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: March 21, 2000
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Gregory M. Haugen, Andrew J. Steinbach, John H. Thomas, III, Raymond J. Ziegler
  • Patent number: 5910378
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: June 8, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 5879828
    Abstract: A membrane electrode assembly is provided comprising an ion conducting membrane and one or more electrode layers that comprise nanostructured elements, wherein the nanostructured elements are in incomplete contact with the ion conducting membrane. This invention also provides methods to make the membrane electrode assembly of the invention. The membrane electrode assembly of this invention is suitable for use in electrochemical devices, including proton exchange membrane fuel cells, electrolyzers, chlor-alkali separation membranes, and the like.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: March 9, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Mark K. Debe, Richard J. Poirier, Michael K. Wackerfuss, Raymond J. Ziegler
  • Patent number: 5879827
    Abstract: Nanostructured elements are provided for use in the electrode of a membrane electrode assembly for use in fuel cells, sensors, electrochemical cells, and the like. The nanostructured elements comprise acicular microstructured support whiskers bearing acicular nanoscopic catalyst particles which may comprise alternating layers of catalyst materials, which may comprise a surface layer that differs in composition from the bulk composition of the catalyst particles, and which may demonstrate improved carbon monoxide tolerance.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: March 9, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Mark K. Debe, Gregory M. Haugen, Andrew J. Steinbach, John H. Thomas, III, Raymond J. Ziegler