Patents by Inventor Raymond Liu

Raymond Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951906
    Abstract: Systems and methods for deploying emergency roadside signaling devices are disclosed. In one aspect, system for an autonomous vehicle includes one or more signaling devices configured to visually notify other vehicles when placed on or near a roadway, and an object placing device configured to place the one or more signaling devices. The system further includes a processor and a computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to: determine that the autonomous vehicle has experienced a malfunction, and provide instructions to the object placing device to place the one or more signaling devices on or near the roadway.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: April 9, 2024
    Assignee: TuSimple, Inc.
    Inventors: Charles A Price, Todd B. Skinner, Juexiao Ning, Yishi Liu, Qiwei Li, Raymond Alan Thomas, Alan Camyre, Jim Giglio, Robert Patrick Brown
  • Patent number: 11945367
    Abstract: Systems and methods for deploying emergency roadside signaling devices are disclosed. In one aspect, a control system for an object placing device of an autonomous vehicle includes a processor, and a computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to: receive a signal comprising instructions to activate the object placing device; and provide instructions to the object placing device to place a plurality of signaling devices in accordance with predetermined criteria.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: April 2, 2024
    Assignee: TuSimple, Inc.
    Inventors: Charles A. Price, Todd B. Skinner, Juexiao Ning, Yishi Liu, Qiwei Li, Raymond Alan Thomas, Alan Camyre, Jim Giglio, Robert Patrick Brown
  • Publication number: 20240075062
    Abstract: The present disclosure generally relates to, inter alia, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. In addition, the new receptors described herein incorporate an extracellular oligomerization domain to promote oligomer formation of the chimeric receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions such as cancers.
    Type: Application
    Filed: March 3, 2023
    Publication date: March 7, 2024
    Inventors: Kole T. ROYBAL, Raymond LIU, Iowis ZHU
  • Patent number: 11897932
    Abstract: The present disclosure generally relates to, among other things, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions or diseases, such as cancers.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: February 13, 2024
    Assignee: The Regents of the University of California
    Inventors: Kole T. Roybal, Raymond Liu, Iowis Zhu
  • Publication number: 20230183709
    Abstract: The present disclosure generally relates to, inter alia, a new class of chimeric Notch receptors containing a fully humanized transcriptional effector, engineered to modulate gene expression and cellular activities in a ligand-dependent manner. The new chimeric Notch receptors surprisingly retain the ability to transduce signals in response to ligand binding despite that the Notch extracellular subunit (NEC), which includes the negative regulatory region (NRR) previously believed to be essential for the functioning of Notch receptors is completely absent. In addition, the new receptors described herein incorporate an extracellular oligomerization domain to promote oligomer formation of the chimeric receptors. Also provided are compositions and methods useful for producing such receptors, nucleic acids encoding same, engineered cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various diseases such as cancers.
    Type: Application
    Filed: April 8, 2021
    Publication date: June 15, 2023
    Inventors: Kole T. ROYBAL, Raymond LIU
  • Publication number: 20230174612
    Abstract: The present disclosure generally relates to, inter alia, a new class of chimeric Notch receptors containing a synthetic zinc finger transcriptional effector (synZTE) module, engineered to modulate gene expression and cellular activities in a ligand-dependent manner. The new Notch receptors surprisingly retain the ability to transduce signals in response to ligand binding despite that the Notch extracellular subunit (NEC), which includes the negative regulatory region (NRR) previously believed to be essential for the functioning of Notch receptors, is partly or completely deleted. In addition, the synZTE is designed to bind orthogonal DNA target sequences in target organisms which in turn facilitates precise regulation of therapeutic gene expression with minimal off-target activity.
    Type: Application
    Filed: March 24, 2021
    Publication date: June 8, 2023
    Inventors: Kole T. ROYBAL, Iowis ZHU, Raymond LIU, Ahmad S. KHALIL, Divya ISRANI
  • Patent number: 11617766
    Abstract: The present disclosure generally relates to, inter alia, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. In addition, the new receptors described herein incorporate an extracellular oligomerization domain to promote oligomer formation of the chimeric receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions such as cancers.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: April 4, 2023
    Assignee: The Regents of the University of California
    Inventors: Kole T. Roybal, Raymond Liu, Iowis Zhu
  • Publication number: 20220372101
    Abstract: The present disclosure generally relates to, among other things, a new class of receptors engineered to modulate transcription in a ligand-dependent manner. The new receptors provide a selectable degree of noise, expression level, and signal to noise ratio. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions or diseases, such as cancers.
    Type: Application
    Filed: September 23, 2020
    Publication date: November 24, 2022
    Inventors: Kole T. ROYBAL, Raymond LIU, Iowis ZHU
  • Publication number: 20220356225
    Abstract: The present disclosure generally relates to, inter alia, a new class of chimeric Notch receptors containing a synthetic zinc finger transcriptional effector (synZTE) module, engineered to modulate gene expression and cellular activities in a ligand-dependent manner. The new Notch receptors surprisingly retain the ability to transduce signals in response to ligand binding despite that the Notch extracellular subunit, which includes the negative regulatory region previously believed to be essential for the functioning of Notch receptors, is partly or completely deleted. In addition, the synZTE is designed to bind orthogonal DNA target sequences in target organisms which in turn facilitates precise regulation of therapeutic gene expression with minimal off-target activity.
    Type: Application
    Filed: September 23, 2020
    Publication date: November 10, 2022
    Inventors: Kole T. ROYBAL, Iowis ZHU, Raymond LIU, Ahmad S. KHALIL, Divya ISRANI
  • Publication number: 20220348628
    Abstract: The present disclosure generally relates to, among other things, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner Particularly, the new receptors, even though derived from Notch and Robo, do not require the Notch or Robo regulatory regions previously believed to be necessary for the functioning of the receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions such as diseases (e.g., cancers).
    Type: Application
    Filed: September 23, 2020
    Publication date: November 3, 2022
    Inventors: Kole T. ROYBAL, Raymond LIU, Iowis ZHU
  • Publication number: 20220348677
    Abstract: The present disclosure generally relates to, among other things, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. In particular, the new receptors contain a heterologous transmembrane domain comprising at least one ?-secretase site. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions or diseases, such as cancers.
    Type: Application
    Filed: September 23, 2020
    Publication date: November 3, 2022
    Inventors: Kole T. ROYBAL, Raymond LIU, Iowis ZHU
  • Publication number: 20220340637
    Abstract: The present disclosure generally relates to, inter alia, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. In addition, the new receptors described herein incorporate a flexible polypeptide connector region disposed between the extracellular ligand-binding domain (ECD) and the transmembrane domain (TMD) which facilitates optimizing the stiffness/flexibility of the chimeric polypeptides to achieve a desired activity. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions such as diseases (e.g., cancers).
    Type: Application
    Filed: September 23, 2020
    Publication date: October 27, 2022
    Inventors: Kole T. ROYBAL, Raymond LIU, Iowis ZHU
  • Publication number: 20220133797
    Abstract: The present disclosure generally relates to, inter alia, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. In addition, the new receptors described herein incorporate an extracellular oligomerization domain to promote oligomer formation of the chimeric receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions such as cancers.
    Type: Application
    Filed: November 17, 2021
    Publication date: May 5, 2022
    Inventors: Kole T. Roybal, Raymond Liu, Iowis Zhu
  • Patent number: 11294446
    Abstract: Examples for setting a system state as one of wakeable through a trigger and non-wakeable, are described. In one example, a value of an enabling time interval is obtained. Thereafter, it is determined if the enabling time interval has elapsed since the computing device has been in a low powered mode. Based on the determining, a system state is set as one of wakeable and non-wakeable through a trigger.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: April 5, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Poying Chih, Raymond Liu, Shu Ming Kuo
  • Patent number: 11202801
    Abstract: The present disclosure generally relates to, inter alia, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. In addition, the new receptors described herein incorporate an extracellular oligomerization domain to promote oligomer formation of the chimeric receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions such as cancers.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: December 21, 2021
    Assignee: The Regents of the University of California, UCSF
    Inventors: Kole T. Roybal, Raymond Liu, Iowis Zhu
  • Publication number: 20210268024
    Abstract: The present disclosure generally relates to, inter alia, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. In addition, the new receptors described herein incorporate an extracellular oligomerization domain to promote oligomer formation of the chimeric receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions such as cancers.
    Type: Application
    Filed: March 30, 2021
    Publication date: September 2, 2021
    Inventors: Kole T. ROYBAL, Raymond Liu, Iowis Zhu
  • Publication number: 20210246186
    Abstract: The present disclosure generally relates to, among other things, a new class of receptors engineered to modulate transcriptional regulation in a ligand-dependent manner. Particularly, the new receptors, even though derived from Notch, do not require the Notch negative regulatory regions previously believed to be essential for the functioning of the receptors. The disclosure also provides compositions and methods useful for producing such receptors, nucleic acids encoding same, host cells genetically modified with the nucleic acids, as well as methods for modulating an activity of a cell and/or for the treatment of various health conditions or diseases, such as cancers.
    Type: Application
    Filed: March 30, 2021
    Publication date: August 12, 2021
    Inventors: Kole T. Roybal, Raymond Liu, Iowis Zhu
  • Publication number: 20210089103
    Abstract: Examples disclosed herein relate to changing power states of a device. Example devices include an input/output port to couple to a component to receive an actuation event. A chipset processor of the device may determine a power state of the device; in response to a determination that the power state is an ultra-low power state, determine a component identification (ID) of the component; fetch a reference ID from non-volatile memory; and compare the determined component ID with the reference ID. The chipset processor of the example device to transmit a signal to change the power state of the device in response to a match between the determined component ID and the reference ID and reception of signals indicative of an actuation event.
    Type: Application
    Filed: January 31, 2018
    Publication date: March 25, 2021
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Poying Chih, Tan Lin, Raymond Liu, ChenTai Huang
  • Publication number: 20200142468
    Abstract: Examples for setting a system state as one of wakeable through a trigger and non-wakeable, are described. In one example, a value of an enabling time interval is obtained. Thereafter, it is determined if the enabling time interval has elapsed since the computing device has been in a low powered mode.
    Type: Application
    Filed: April 20, 2017
    Publication date: May 7, 2020
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Poying Chih, Raymond Liu, Shu Ming Kuo
  • Patent number: 9915709
    Abstract: A motor system includes a motor including two Hall sensors configured to output binary values, and a controller configured to control the motor. The two Hall sensors are placed 120 or 60 electrical degrees apart. The controller is operable to monitor output signals of the two Hall sensors and to determine a third Hall sensor output binary value. The controller is operable to fulfill the commanded requirements to operate in a servo system, by controlling commutation of a drive current into the motor, and by keeping track of the motor rotor position based on the third generated signal and the outputs of the two Hall sensors.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 13, 2018
    Assignee: Woodward, Inc.
    Inventors: Raymond Liu, Estella Chung