Patents by Inventor Raymond M. Jones

Raymond M. Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9700855
    Abstract: A mixer for a continuous flow reactor and methods for forming the mixer and the operation thereof. The mixer allows for segmentation of a primary reactant flow through a plurality of ports into many smaller flows that are injected as jets into a secondary reactant flow in channels of the mixer. The channel has a constant width dimension to enhance even flow distribution and local turbulence of the primary and secondary reactant flows. The constant width dimension of the channel and the size and number of the ports of the mixer can be configured to ensure the primary reactant flow injected into the channel directly impinges on a surface of the channel that is opposite the injection point at normal operating conditions.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: July 11, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Gene W. Bachman, Raymond M. Jones, Michael D. Cloeter, Charles W. Lipp, Mark J. Bartel, Brady J. Coomes, Scott J. Daigle, Steve F. Janda
  • Patent number: 9545606
    Abstract: Embodiments of the present disclosure include a process and a system for solubilizing a surfactant in supercritical carbon dioxide that include providing a turbulent flow of the supercritical carbon dioxide into which the surfactant solubilizes and injecting the surfactant into the turbulent flow of the supercritical carbon dioxide to achieve a Jet Mixing Number of 0.01 to 1.0. In one or more embodiments, a pump provides turbulent flow to supercritical carbon dioxide moving through at least a portion of piping, and an injector associated with the piping conveys the surfactant through surfaces defining a port in the injector to inject the surfactant into the turbulent flow of the supercritical carbon dioxide so as to achieve the Jet Mixing Number of 0.01 to 1.0.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: January 17, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Michael D. Cloeter, Raymond M. Jones
  • Patent number: 9416051
    Abstract: Disclosed is a composition and a method for cementing a casing in a borehole of a well using an aqueous cementing composition comprising (a) water, (b) a cementing composition comprising (i) a hydraulic cement, (ii) a hydrophobically modified polymer, (iii) a dispersant, and optionally (iv) one or more other additives conventionally added to aqueous cementing compositions useful in cementing casings in the borehole of wells. Preferably the hydrophobically modified hydroxyethyl cellulose has an ethylene oxide molar substitution of from 0.5 to 3.5, a hydrophobe degree of substitution of from 0.001 to 0.025, and a weight-average molecular weight of from 500,000 to 4,000,000 Daltons and the dispersant is sulfonated polymer, melamine formaldehyde condensate, a naphthalene formaldehyde condensate, a branched or non-branched polycarboxylate polymer.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: August 16, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Roger L. Kuhlman, Cole A. Witham, Michael K. Poindexter, Raymond M. Jones, Nathan Kyle Combs, Jeffrey T. Watters, Larry T. Watters
  • Publication number: 20150353810
    Abstract: Disclosed is a composition and a method for cementing a casing in a borehole of a well using an aqueous cementing composition comprising (a) water, (b) a cementing composition comprising (i) a hydraulic cement, (ii) a hydrophobically modified polymer, (iii) a dispersant, and optionally (iv) one or more other additives conventionally added to aqueous cementing compositions useful in cementing casings in the borehole of wells. Preferably the hydrophobically modified hydroxyethyl cellulose has an ethylene oxide molar substitution of from 0.5 to 3.5, a hydrophobe degree of substitution of from 0.001 to 0.025, and a weight-average molecular weight of from 500,000 to 4,000,000 Daltons and the dispersant is sulfonated polymer, melamine formaldehyde condensate, a naphthalene formaldehyde condensate, a branched or non-branched polycarboxylate polymer.
    Type: Application
    Filed: December 6, 2013
    Publication date: December 10, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Roger L. Kuhlman, Cole A. Witham, Michael K. Poindexter, Raymond M. Jones, Nathan Kyle Combs, Jeffrey T. Watters, Larry T. Watters
  • Publication number: 20140355373
    Abstract: A mixer for a continuous flow reactor and methods for forming the mixer and the operation thereof. The mixer allows for segmentation of a primary reactant flow through a plurality of ports into many smaller flows that are injected as jets into a secondary reactant flow in channels of the mixer. The channel has a constant width dimension to enhance even flow distribution and local turbulence of the primary and secondary reactant flows. The constant width dimension of the channel and the size and number of the ports of the mixer can be configured to ensure the primary reactant flow injected into the channel directly impinges on a surface of the channel that is opposite the injection point at normal operating conditions.
    Type: Application
    Filed: August 11, 2014
    Publication date: December 4, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Gene W. Bachman, Raymond M. Jones, Michael D. Cloeter, Charles W. Lipp, Mark J. Bartel, Brady J. Coomes, Scott J. Daigle, Steve F. Janda
  • Patent number: 8827544
    Abstract: A mixer (100) for a continuous flow reactor (330) and methods for forming the mixer and the operation thereof. The mixer allows for segmentation of a primary reactant flow through a plurality of ports (124) into many smaller flows that are injected as jets into a secondary reactant flow in channels of the mixer. The channel (126) has a constant width dimension to enhance even flow distribution and local, turbulence of the primary and secondary reactant flows. The constant width dimension of the channel and the size and number of the ports of the mixer can be configured to ensure the primary reactant flow injected into the channel directly impinges on a surface (116) of the channel that is opposite the injection point at normal operating conditions.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 9, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Gene W. Bachman, Raymond M. Jones, Michael D. Cloeter, Charles W. Lipp, Mark J. Bartel, Brady J. Coomes, Scott J. Daigle, Steve F. Janda
  • Publication number: 20130240046
    Abstract: Embodiments of the present disclosure include a process and a system for solubilizing a surfactant in supercritical carbon dioxide that include providing a turbulent flow of the supercritical carbon dioxide into which the surfactant solubilizes and injecting the surfactant into the turbulent flow of the supercritical carbon dioxide to achieve a Jet Mixing Number of 0.01 to 1.0. In one or more embodiments, a pump provides turbulent flow to supercritical carbon dioxide moving through at least a portion of piping, and an injector associated with the piping conveys the surfactant through surfaces defining a port in the injector to inject the surfactant into the turbulent flow of the supercritical carbon dioxide so as to achieve the Jet Mixing Number of 0.01 to 1.0.
    Type: Application
    Filed: June 3, 2011
    Publication date: September 19, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Michael D. Cloeter, Raymond M. Jones
  • Publication number: 20130074943
    Abstract: Embodiments of the present disclosure include a process and a system for solubilizing a surfactant in supercritical carbon dioxide that include providing a turbulent flow of the supercritical carbon dioxide into which the surfactant solubilizes and injecting the surfactant into the turbulent flow of the supercritical carbon dioxide to achieve a Jet Mixing Number of 0.01 to 1.0. In one or more embodiments, a pump provides turbulent flow to supercritical carbon dioxide moving through at least a portion of piping, and an injector associated with the piping conveys the surfactant through surfaces defining a port in the injector to inject the surfactant into the turbulent flow of the supercritical carbon dioxide so as to achieve the Jet Mixing Number of 0.01 to 1.0.
    Type: Application
    Filed: June 3, 2011
    Publication date: March 28, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Michael D. Cloeter, Raymond M. Jones
  • Publication number: 20100103769
    Abstract: A mixer (100) for a continuous flow reactor (330) and methods for forming the mixer and the operation thereof. The mixer allows for segmentation of a primary reactant flow through a plurality of ports (124) into many smaller flows that are injected as jets into a secondary reactant flow in channels of the mixer. The channel (126) has a constant width dimension to enhance even flow distribution and local, turbulence of the primary and secondary reactant flows. The constant width dimension of the channel and the size and number of the ports of the mixer can be configured to ensure the primary reactant flow injected into the channel directly impinges on a surface (116) of the channel that is opposite the injection point at normal operating conditions.
    Type: Application
    Filed: March 15, 2007
    Publication date: April 29, 2010
    Inventors: Gene W. Bachman, Raymond M. Jones, Michael D. Cloeter, Charles W. Lipp, Mark J. Bartel, Brady J. Coomes, Scott J. Daigle, Steve F. Janda