Patents by Inventor Raymond Neff

Raymond Neff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8604094
    Abstract: A flexible polyurethane foam comprises the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component comprises a polymeric diphenylmethane diisocyanate component and a monomeric diphenylmethane diisocyanate component. The monomeric diphenylmethane diisocyanate component comprises 2,4?-diphenylmethane diisocyanate and 4,4?-diphenylmethane diisocyanate. The isocyanate-reactive component comprises a polyether polyol having a molecular weight of from about 700 to about 20,000 and a plurality of terminal caps which are substantially free of ethylene oxide groups. The flexible polyurethane foam is substantially free of supplemental flame retardant additives and exhibits flame retardance under flammability tests according to California Technical Bulletin 117 regulations.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: December 10, 2013
    Assignee: BASF SE
    Inventors: Raymond A. Neff, Theodore M. Smiecinski
  • Publication number: 20130305797
    Abstract: A dust suppressing aggregate includes a core particle and a dust suppressing agent. The dust suppressing agent comprises polyurethane and is disposed about the core particle for suppressing dusting of the core particle. A method of forming the dust suppressing aggregate includes the steps of providing the core particle and encapsulating the core particle with the polyurethane.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 21, 2013
    Inventors: Raymond Neff, Alexander Gershanovich, Donald C. Mente
  • Publication number: 20130309499
    Abstract: An encapsulated particle includes a core particle, a polyurethane layer, and a wax. The polyurethane layer is disposed about the core particle and the wax is disposed about the polyurethane layer. The polyurethane layer includes the reaction product of an isocyanate and a polyol component. The polyol component includes a catalytic polyol derived from an aromatic amine-based initiator and a polyether polyol that is different from the catalytic polyol in a weight ratio of from about 1:2 to about 10:1. A method of encapsulating the core particle includes the steps of providing the core particle, the isocyanate, the polyol component, and the wax. The method also includes the steps of mixing and reacting the isocyanate and the polyol component to form a polyurethane, encapsulating the core particle with the polyurethane layer which comprises the polyurethane, and encapsulating the polyurethane layer with the wax.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 21, 2013
    Inventors: Raymond Neff, Alexander Gershanovich, Donald C. Mente
  • Patent number: 8302280
    Abstract: An appliance includes a housing having top and bottom panels disposed opposite each other and a plurality of walls connected to the top and bottom panels. The top and bottom panels and the plurality of walls define a cavity of the appliance. The housing also has an outermost surface about which a polyurethane foam is disposed. The polyurethane foam reduces noise and vibrations emitted from the appliance during use and has a density of from 20 to 50 pounds per cubic foot (pcf). The polyurethane foam also has a damping factor of at least 0.2 measured at a temperature of from 40° C. to 60° C. Furthermore, the polyurethane foam has a k-factor of less than 2.0 btu-in/hr-ft2-° F. which reduces an amount of energy required to operate the appliance. The appliance is formed by applying the polyurethane foam to at least one of the top panel, bottom panel, and plurality of walls.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: November 6, 2012
    Assignee: BASF SE
    Inventors: Raymond A. Neff, Lucyanne Carmona, David R. Phelps
  • Publication number: 20110168217
    Abstract: An appliance includes a housing having top and bottom panels disposed opposite each other and a plurality of walls connected to the top and bottom panels. The top and bottom panels and the plurality of walls define a cavity of the appliance. The housing also has an outermost surface about which a polyurethane foam is disposed. The polyurethane foam reduces noise and vibrations emitted from the appliance during use and has a density of from 20 to 50 pounds per cubic foot (pcf). The polyurethane foam also has a damping factor of at least 0.2 measured at a temperature of from 40° C. to 60° C. Furthermore, the polyurethane foam has a k-factor of less than 2.0 btu-in/hr-ft2-° F. which reduces an amount of energy required to operate the appliance. The appliance is formed by applying the polyurethane foam to at least one of the top panel, bottom panel, and plurality of walls.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 14, 2011
    Inventors: Raymond A. Neff, Lucyanne Carmona, David R. Phelps
  • Publication number: 20100196690
    Abstract: A unique combination of a hydrophilic polyol (A) and a hydrophobic polyol (B) having a terminal ethylene oxide cap are used in a resin composition and a polyurethane system, and are used to form a polyurethane article, such as a polyurethane foam. The hydrophilic polyol (A) is ethylene oxide (EO) rich and the hydrophobic polyol (B) is propylene oxide (PO) rich. The hydrophilic polyol (A) and the hydrophobic polyol (B) are present in the resin composition and the polyurethane system in a weight ratio (A:B) of from 1.5:1 to 20:1. The polyurethane article exhibits excellent comfort for use in vehicle applications, such as automotive and motorcycle seating, due to reduced resonance frequency and reduced peak vibration transmissivity relative to previous polyurethane articles.
    Type: Application
    Filed: April 12, 2010
    Publication date: August 5, 2010
    Inventors: Raymond A. Neff, Jon P. Pavlinac, Mark J. Hughes, Berend Eling, Juergen Mertes, Stephan Goettke
  • Publication number: 20100160473
    Abstract: A flexible polyurethane foam comprises the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component comprises a polymeric diphenylmethane diisocyanate component and a monomeric diphenylmethane diisocyanate component. The monomeric diphenylmethane diisocyanate component comprises 2,4?-diphenylmethane diisocyanate and 4,4?-diphenylmethane diisocyanate. The isocyanate-reactive component comprises a polyether polyol having a molecular weight of from about 700 to about 20,000 and a plurality of terminal caps which are substantially free of ethylene oxide groups. The flexible polyurethane foam is substantially free of supplemental flame retardant additives and exhibits flame retardance under flammability tests according to California Technical Bulletin 117 regulations.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 24, 2010
    Inventors: Raymond A. Neff, Theodore M. Smiecinski
  • Publication number: 20090012195
    Abstract: A unique combination of a hydrophilic polyol (A) and a hydrophobic polyol (B) having a terminal ethylene oxide cap are used in a resin composition and a polyurethane system, and are used to form a polyurethane article, such as a polyurethane foam. The hydrophilic polyol (A) is ethylene oxide (EO) rich and the hydrophobic polyol (B) is propylene oxide (PO) rich. The hydrophilic polyol (A) and the hydrophobic polyol (B) are present in the resin composition and the polyurethane system in a weight ratio (A:B) of from 1.5:1 to 20:1. The polyurethane article exhibits excellent comfort for use in vehicle applications, such as automotive and motorcycle seating, due to reduced resonance frequency and reduced peak vibration transmissivity relative to previous polyurethane articles.
    Type: Application
    Filed: July 5, 2007
    Publication date: January 8, 2009
    Inventors: Raymond A. Neff, Jon P. Pavlinac, Mark J. Hughes, Berend Eling, Juergen Mertes, stephan Goettke
  • Patent number: 7238730
    Abstract: The subject invention provides a viscoelastic polyurethane foam being flame retardant and having a density of greater than two and a half pounds per cubic foot that comprises a reaction product of an isocyanate component, an isocyanate-reactive blend, and a chain extender. The isocyanate-reactive blend includes a first isocyanate-reactive component and a second isocyanate-reactive component. The first isocyanate-reactive component includes at least 60 parts by weight of ethylene oxide (EO) based on 100 parts by weight of the first isocyanate-reactive component and the second isocyanate-reactive component includes at most 30 parts by weight of EO based on 100 parts by weight of the second isocyanate-reactive component. The chain extender is reactive with the isocyanate component and has a backbone chain with from two to eight carbon atoms and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the foam.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 3, 2007
    Assignee: BASF Corporation
    Inventors: Wassana Apichatachutapan, Raymond Neff, James Mullins, Theodore M. Smiecinski, Thomas B. Lee
  • Patent number: 7208531
    Abstract: The subject invention provides a viscoelastic polyurethane foam having a density of from one to twenty pounds per cubic foot. The foam is formed from a composition that is a reaction product of an isocyanate component (A), a first polyether polyol (B), a second polyether polyol (C), and a chain extender (D). The chain extender (D) has a backbone chain with from two to eight carbon atoms and has a weight-average molecular weight of less than 1,000 and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the composition. The viscoelastic polyurethane foam a first glass transition temperature greater than zero and a second glass transition temperature less than zero and having a tan delta peak ratio of the first glass transition temperature to the second glass transition temperature less than 2.2.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: April 24, 2007
    Assignee: BASF Corporation
    Inventors: Raymond A. Neff, Suzanne Dakin
  • Publication number: 20070085677
    Abstract: The system of the invention includes a method for monitoring changes in the status or condition of a Container using one or more monitoring units mounted to the Container. The monitoring units preferably include a power supply, sensors using reflective energy with programmable parameters, globally-unique sensor identification, recording capability on a timeline, long term memory and the ability to rebroadcast information on RFID radio technology. Programmable monitoring hardware in the monitoring unit detects significant changes in the sensor outputs as a triggering event. The programmable monitoring hardware includes memory for storing identification information for the Container. The sensors which can include conventional devices that detect various forms of energy including visible light, infrared light, magnetic fields, radio frequency energy and sound. In one embodiment, a monitoring unit is mounted inside a shipping Container suitable for long distance transport.
    Type: Application
    Filed: April 4, 2006
    Publication date: April 19, 2007
    Inventors: Raymond Neff, Fred Barrett
  • Publication number: 20060223973
    Abstract: A polyethercarbonate polyol includes polyethercarbonate segments, polycarbonate segments, and polyether segments. A method of forming the polyethercarbonate polyol provides a catalyst, including a multimetal cyanide compound, and reacts an H-functional initiator, an alkylene oxide, and carbon dioxide in the presence of the multimetal cyanide compound to form the polyethercarbonate polyol. Amounts of each segment in the polyethercarbonate polyol are selectively controlled.
    Type: Application
    Filed: March 29, 2005
    Publication date: October 5, 2006
    Inventors: Werner Hinz, Edward Dexheimer, John Broge, Raymond Neff, Theodore Smiecinski
  • Publication number: 20060189704
    Abstract: A resin composition includes a polyol and is used to form flexible foams. The resin composition also includes water and an alkoxylate of an active hydrogen containing species. The alkoxylate of the active hydrogen containing species acts in two separate ways. The alkoxylate acts as a blowing reaction modifier, thus maintaining slow-blow behavior of a foaming process that accompanies a reaction of the polyol with an isocyanate. The alkoxylate also acts as a compatibilizer. As the compatibilizer, the alkoxylate stabilizes the resin composition such that no phase separation occurs between the polyol, the water, and the alkoxylate. Stabilizing the resin composition allows for multiple day storage of the resin composition with no phase separation, thus extending useable shelf life and reducing production costs. Stabilizing the resin composition also allows for formation of flexible foams with consistent physical properties such as flexibility.
    Type: Application
    Filed: February 18, 2005
    Publication date: August 24, 2006
    Inventors: Edward Dexheimer, Raymond Neff
  • Publication number: 20050038133
    Abstract: The subject invention provides a viscoelastic polyurethane foam having a density of from one to twenty pounds per cubic foot. The foam is formed from a composition that is a reaction product of an isocyanate component (A), a first polyether polyol (B), a second polyether polyol (C), and a chain extender (D). The chain extender (D) has a backbone chain with from two to eight carbon atoms and has a weight-average molecular weight of less than 1,000 and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the composition. The viscoelastic polyurethane foam a first glass transition temperature greater than zero and a second glass transition temperature less than zero and having a tan delta peak ratio of the first glass transition temperature to the second glass transition temperature less than 2.2.
    Type: Application
    Filed: August 11, 2004
    Publication date: February 17, 2005
    Inventors: Raymond Neff, Suzanne Dakin
  • Publication number: 20040266897
    Abstract: The subject invention provides a viscoelastic polyurethane foam being flame retardant and having a density of greater than two and a half pounds per cubic foot that comprises a reaction product of an isocyanate component, an isocyanate-reactive blend, and a chain extender. The isocyanate-reactive blend includes a first isocyanate-reactive component and a second isocyanate-reactive component. The first isocyanate-reactive component includes at least 60 parts by weight of ethylene oxide (EO) based on 100 parts by weight of the first isocyanate-reactive component and the second isocyanate-reactive component includes at most 30 parts by weight of EO based on 100 parts by weight of the second isocyanate-reactive component. The chain extender is reactive with the isocyanate component and has a backbone chain with from two to eight carbon atoms and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the foam.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: Wassana Apichatachutapan, Raymond Neff, James Mullins, Theodore M. Smiecinski, Thomas B. Lee
  • Publication number: 20040266900
    Abstract: The subject invention provides a viscoelastic polyurethane foam having a density of from one to thirty pounds per cubic foot formed from a composition comprising an isocyanate component substantially free of toluene diisocyanate, an isocyanate-reactive component, and a chain extender having a backbone chain with from two to eight carbon atoms. The chain extender also has a weight-average molecular weight of less than 1,000 and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the composition. The viscoelastic polyurethane foam has a glass transition temperature of from 15 to 35 degrees Celsius and a tan delta peak of from 0.9 to 1.5.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: Raymond Neff, Raghuram Gummaraju, Theodore M. Smiecinski
  • Patent number: 6713599
    Abstract: A method of forming a polyol includes the steps of reacting an initiator with an alkylene oxide, and optionally carbon dioxide, in the presence of a double metal cyanide catalyst and a sterically hindered chain transfer agent capable of protonating the growing polyol polymer. The presence of the chain transfer agent reduces the polydispersity of the resultant polyol.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 30, 2004
    Assignee: BASF Corporation
    Inventors: Werner Hinz, Jacob Wildeson, Edward Michael Dexheimer, Raymond Neff
  • Patent number: 6710096
    Abstract: Polyols initiated with a first initiator having a relatively high functionality averaging greater than eight and comprising a range of species of different functionality, and optionally a second initiator, having low functionality, i.e. a two to eight nominal functionality initiator molecule. Another aspect of the invention is a process for making the polyol. The invention is also directed to a process for producing polyurethane foam by reacting the polyol of the invention with isocyanates, and the foam produced thereby.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: March 23, 2004
    Assignee: BASF Corporation
    Inventors: Raymond A. Neff, Duane A. Heyman
  • Publication number: 20040014829
    Abstract: Polyols initiated with a first initiator having a relatively high functionality averaging greater than eight and comprising a range of species of different functionality, and optionally a second initiator, having low functionality, i.e. a two to eight nominal functionality initiator molecule. Another aspect of the invention is a process for making the polyol. The invention is also directed to a process for producing polyurethane foam by reacting the polyol of the invention with isocyanates, and the foam produced thereby.
    Type: Application
    Filed: July 22, 2002
    Publication date: January 22, 2004
    Inventors: Raymond A. Neff, Duane A. Heyman