Patents by Inventor Raymond Nicholas Vrtis

Raymond Nicholas Vrtis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8399349
    Abstract: The present invention is a process for forming an air gap within a substrate, the process comprising: providing a substrate; depositing a sacrificial material by deposition of at least one sacrificial material precursor; depositing a composite layer; removale of the porogen material in the composite layer to form a porous layer and contacting the layered substrate with a removal media to substantially remove the sacrificial material and provide the air gaps within the substrate; wherein the at least one sacrificial material precursor is selected from the group consisting of: an organic porogen; silicon, and a polar solvent soluble metal oxide and mixtures thereof.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: March 19, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Dingjun Wu, Mark Leonard O'Neill, Mark Daniel Bitner, Jean Louise Vincent, Eugene Joseph Karwacki, Jr., Aaron Scott Lukas
  • Publication number: 20120282415
    Abstract: A chemical vapor deposition method for producing a porous organosilica glass film comprising: introducing into a vacuum chamber gaseous reagents including at least one precursor selected from the group consisting of an organosilane and an organosiloxane, and a porogen that is distinct from the precursor; applying energy to the gaseous reagents in the vacuum chamber to induce reaction of the gaseous reagents to deposit a preliminary film on the substrate, wherein the preliminary film contains the porogen; and removing from the preliminary film substantially all of the porogen to provide the porous film with pores and a dielectric constant less than 2.6.
    Type: Application
    Filed: November 1, 2011
    Publication date: November 8, 2012
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Mark Leonard O'Neill, Jean Louise Vincent, Aaron Scott Lukas, Mary Kathryn Haas
  • Patent number: 8293001
    Abstract: A porous organosilica glass (OSG) film consists of a single phase of a material represented by the formula SivOwCxHyFz, where v+w+x+y+z=100%, v is from 10 to 35 atomic %, w is from 10 to 65 atomic %, x is from 5 to 30 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %, wherein the film has pores and a dielectric constant less than 2.6.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: October 23, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Mark Leonard O'Neill, Jean Louise Vincent, Aaron Scott Lukas, Manchao Xiao, John Anthony Thomas Norman
  • Patent number: 8283260
    Abstract: A method for preparing an interlayer dielectric to minimize damage to the interlayer's dielectric properties, the method comprising the steps of: depositing a layer of a silicon-containing dielectric material onto a substrate, wherein the layer has a first dielectric constant and wherein the layer has at least one surface; providing an etched pattern in the layer by a method that includes at least one etch process and exposure to a wet chemical composition to provide an etched layer, wherein the etched layer has a second dielectric constant, and wherein the wet chemical composition contributes from 0 to 40% of the second dielectric constant; contacting the at least one surface of the layer with a silicon-containing fluid; optionally removing a first portion of the silicon-containing fluid such that a second portion of the silicon-containing fluid remains in contact with the at least one surface of the layer; and exposing the at least one surface of the layer to UV radiation and thermal energy, wherein the lay
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: October 9, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Scott Jeffrey Weigel, Mark Leonard O'Neill, Mary Kathryn Haas, Laura M. Matz, Glenn Michael Mitchell, Aiping Wu, Raymond Nicholas Vrtis, John Giles Langan
  • Patent number: 8137764
    Abstract: A chemical vapor deposition process for preparing a low dielectric constant organosilicate (OSG) having enhanced mechanical properties by adjusting the amount of organic groups, such as methyl groups, within the mixture is disclosed herein. In one embodiment of the present invention, the OSG film is deposited from a mixture comprising a first silicon-containing precursor that comprises from 3 to 4 Si—O bonds per Si atom, from 0 to 1 of bonds selected from the group consisting of Si—H, Si—Br, and Si—Cl bonds per Si atom and no Si—C bonds and a second silicon-containing precursor that comprises at least one Si—C bond per Si atom. In another embodiment of the present invention, the OSG film is deposited from a mixture comprising an asymmetric silicon-containing precursor. In either embodiment, the mixture may further contain a porogen precursor to provide a porous OSG film.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: March 20, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jean Louise Vincent, Mark Leonard O'Neill, Raymond Nicholas Vrtis, Aaron Scott Lukas, Brian Keith Peterson, Mark Daniel Bitner
  • Publication number: 20110308937
    Abstract: A deposition for producing a porous organosilica glass film comprising: introducing into a vacuum chamber gaseous reagents including one precursor of an organosilane or an organosiloxane, and a porogen distinct from the precursor, wherein the porogen is aromatic in nature; applying energy to the gaseous reagents in the chamber to induce reaction of the gaseous reagents to deposit a film, containing the porogen; and removing substantially all of the organic material by UV radiation to provide the porous film with pores and a dielectric constant less than 2.6.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 22, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Mary Kathryn Haas, Raymond Nicholas Vrtis, Laura M. Matz
  • Patent number: 8043976
    Abstract: The present invention relates to the improved adhesion between a patterned conductive metal layer, usually a copper layer, and a patterned barrier dielectric layer. The structure with the improved adhesion comprises an adhesion layer between a patterned barrier dielectric layer and a patterned conductive metal layer. The adhesion layer improves adhesion between the metal layer and the barrier layer without increasing the copper bulk electrical resistance. The method of making the structure with the improved adhesion comprises steps of thermal expositing the patterned conductive metal layer to an organometallic precursor to deposit an adhesion layer at least on the top of the patterned conductive metal layer.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 25, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Laura M. Matz, Mark Leonard O'Neill
  • Publication number: 20110143032
    Abstract: A porous organosilica glass (OSG) film consists of a single phase of a material represented by the formula SivOwCxHyFz, where v+w+x+y+z=100%, v is from 10 to 35 atomic %, w is from 10 to 65 atomic %, x is from 5 to 30 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %, wherein the film has pores and a dielectric constant less than 2.6. The film is provided by a chemical vapor deposition method in which a preliminary film is deposited from organosilane and/or organosiloxane precursors and pore-forming agents (porogens), which can be independent of, or bonded to, the precursors. The porogens are subsequently removed to provide the porous film. Compositions, such as kits, for forming the films include porogens and precursors. Porogenated precursors are also useful for providing the film.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 16, 2011
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Mark Leonard O'Neill, Jean Louise Vincent, Aaron Scott Lukas, Manchao Xiao, John Anthony Thomas Norman
  • Patent number: 7943195
    Abstract: A porous organosilica glass (OSG) film consists of a single phase of a material represented by the formula SivOwCxHyFz, where v+w+x+y+z=100%, v is from 10 to 35 atomic %, w is from 10 to 65 atomic %, x is from 5 to 30 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %, wherein the film has pores and a dielectric constant less than 2.6. The film is provided by a chemical vapor deposition method in which a preliminary film is deposited from organosilane and/or organosiloxane precursors and pore-forming agents (porogens), which can be independent of, or bonded to, the precursors. The porogens are subsequently removed to provide the porous film. Compositions, such as kits, for forming the films include porogens and precursors. Porogenated precursors are also useful for providing the film.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: May 17, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Mark Leonard O'Neill, Jean Louise Vincent, Aaron Scott Lukas, Manchao Xiao, John Anthony Thomas Norman
  • Patent number: 7932188
    Abstract: Low dielectric materials and films comprising same have been identified for improved performance when used as interlevel dielectrics in integrated circuits as well as methods for making same. In one aspect of the present invention, an organosilicate glass film is exposed to an ultraviolet light source wherein the film after exposure has an at least 10% or greater improvement in its mechanical properties (i.e., material hardness and elastic modulus) compared to the as-deposited film.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 26, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Aaron Scott Lukas, Mark Leonard O'Neill, Jean Louise Vincent, Raymond Nicholas Vrtis, Mark Daniel Bitner, Eugene Joseph Karwacki, Jr.
  • Publication number: 20100291321
    Abstract: A process for forming a silicon carbonitride barrier dielectric film between a dielectric film and a metal interconnect of an integrated circuit substrate, comprising the steps of; providing the integrated circuit substrate having a dielectric film; contacting the substrate with a barrier dielectric film precursor comprising: RxR?y(NR?R??)zSi wherein R, R?, R? and R?? are each individually selected from hydrogen, linear or branched saturated or unsaturated alkyl, or aromatic; wherein x÷y+z=4; z=1-3; but R, R? cannot both be hydrogen; forming the silicon carbonitride barrier dielectric film with C/Si ratio>0.8 and a N/Si ratio>0.2 on the integrated circuit substrate.
    Type: Application
    Filed: May 3, 2010
    Publication date: November 18, 2010
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Anupama Mallikarjunan, Raymond Nicholas Vrtis, Laura M. Matz, Mark Leonard O'Neill, Andrew David Johnson, Manchao Xiao
  • Publication number: 20100247803
    Abstract: A chemical vapor deposition (CVD) method for depositing a thin film on a surface of a substrate is described. The CVD method comprises disposing a substrate on a substrate holder in a process chamber, and introducing a process gas to the process chamber, wherein the process gas comprises a chemical precursor. The process gas is exposed to a non-ionizing heat source separate from the substrate holder to cause decomposition of the chemical precursor. A thin film is deposited upon the substrate.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicants: TOKYO ELECTRON LIMITED, AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Eric M. LEE, Raymond Nicholas VRTIS, Mark Leonard O'NEILL, Patrick Timothy HURLEY, Jacques FAGUET, Takashi MATSUMOTO, Osayuki AKIYAMA
  • Publication number: 20100136789
    Abstract: A method is provided for depositing a dielectric barrier film including a precursor with silicon, carbon, oxygen, and hydrogen with improved barrier dielectric properties including lower dielectric constant and superior electrical properties. This method will be important for barrier layers used in a damascene or dual damascene integration for interconnect structures or in other dielectric barrier applications. In this example, specific structural properties are noted that improve the barrier performance.
    Type: Application
    Filed: November 23, 2009
    Publication date: June 3, 2010
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Laura M. Matz, Raymond Nicholas Vrtis, Mark Leonard O'Neill, Dino Sinatore
  • Publication number: 20100041234
    Abstract: A method for preparing an interlayer dielectric to minimize damage to the interlayer's dielectric properties, the method comprising the steps of: depositing a layer of a silicon-containing dielectric material onto a substrate, wherein the layer has a first dielectric constant and wherein the layer has at least one surface; providing an etched pattern in the layer by a method that includes at least one etch process and exposure to a wet chemical composition to provide an etched layer, wherein the etched layer has a second dielectric constant, and wherein the wet chemical composition contributes from 0 to 40% of the second dielectric constant; contacting the at least one surface of the layer with a silicon-containing fluid; optionally removing a first portion of the silicon-containing fluid such that a second portion of the silicon-containing fluid remains in contact with the at least one surface of the layer; and exposing the at least one surface of the layer to UV radiation and thermal energy, wherein the lay
    Type: Application
    Filed: August 13, 2009
    Publication date: February 18, 2010
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Scott Jeffrey Weigel, Mark Leonard O'Neill, Mary Kathryn Haas, Laura M. Matz, Glenn Michael Mitchell, Aiping Wu, Raymond Nicholas Vrtis, John Giles Langan
  • Publication number: 20090236745
    Abstract: The present invention relates to the improved adhesion between a patterned conductive metal layer, usually a copper layer, and a patterned barrier dielectric layer. The structure with the improved adhesion comprises an adhesion layer between a patterned barrier dielectric layer and a patterned conductive metal layer. The adhesion layer improves adhesion between the metal layer and the barrier layer without increasing the copper bulk electrical resistance. The method of making the structure with the improved adhesion comprises steps of thermal expositing the patterned conductive metal layer to an organometallic precursor to deposit an adhesion layer at least on the top of the patterned conductive metal layer.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Laura M. Matz, Mark Leonard O'Neill
  • Patent number: 7581549
    Abstract: A process for removing carbon-containing residues from a substrate is described herein. In one aspect, there is provided a process for removing carbon-containing residue from at least a portion of a surface of a substrate comprising: providing a process gas comprising an oxygen source, a fluorine source, an and optionally additive gas wherein the molar ratio of oxygen to fluorine contained within the process gas ranges from about 1 to about 10; activating the process gas using at least one energy source to provide reactive species; and contacting the surface of the substrate with the reactive species to volatilize and remove the carbon-containing residue from the surface.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: September 1, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Johnson, Hoshang Subawalla, Bing Ji, Raymond Nicholas Vrtis, Eugene Joseph Karwacki, Jr., Robert Gordon Ridgeway, Peter James Maroulis, Mark Leonard O'Neill, Aaron Scott Lukas, Stephen Andrew Motika
  • Publication number: 20090096106
    Abstract: A method of forming a feature in a substrate comprising the steps of: forming a dielectric layer on a substrate; forming an antireflective coating over the dielectric layer; forming a photoresist pattern over the antireflective coating; etching the dielectric layer through the patterned photoresist; and removing the antireflective coating and the photoresist, wherein the antireflective coating is a film represented by the formula SivOwCxNuHyFz, wherein v+w+x+u+y+z=100%, v is from 1 to 35 atomic %, w is from 1 to 40 atomic %, x is from 5 to 80 atomic %, u is from 0 to 50 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %, wherein the antireflective coating is formed by the chemical vapor deposition of a composition comprising (1) at least one precursor selected from the group consisting of an organosilane, an organosiloxane, and an aminosilane; and (2) a hydrocarbon, and wherein the hydrocarbon is substantially not removed from the antireflective coating.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 16, 2009
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Mark Leonard O'Neill, Andrew David Johnson
  • Publication number: 20090095346
    Abstract: A process is provided for making a photovoltaic device comprising a silicon substrate comprising a p-n junction, the process comprising the steps of: forming an amorphous silicon carbide antireflective coating over at least one surface of the silicon substrate by chemical vapor deposition of a composition comprising a precursor selected from the group consisting of an organosilane, an aminosilane, and mixtures thereof, wherein the amorphous silicon carbide antireflective coating is a film represented by the formula SivCxNuHyFz, wherein v+x+u+y+z=100%, v is from 1 to 35 atomic %, x is from 5 to 80 atomic %, u is from 0 to 50 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 16, 2009
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Patrick Timothy Hurley, Robert Gordon Ridgeway, Raymond Nicholas Vrtis, Mark Leonard O'Neill, Andrew David Johnson
  • Publication number: 20090087796
    Abstract: The present invention provides a method for forming an amorphous carbon layer on a substrate. The method comprises the steps of: positioning the substrate in a processing chamber; introducing a process gas into the processing chamber, wherein the process gas comprises a composition comprising a C4 to C10 cyclic hydrocarbon having a single carbon-carbon double bond, wherein the composition is free of a stabilizer; generating a plasma of the process gas; and depositing an amorphous carbon layer on the substrate.
    Type: Application
    Filed: September 16, 2008
    Publication date: April 2, 2009
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Stephen Andrew Motika, Steven Gerard Mayorga
  • Patent number: 7500397
    Abstract: A method for restoring a dielectric constant of a layer of a silicon-containing dielectric material having a first dielectric constant and at least one surface, wherein the first dielectric constant of the layer of silicon-containing dielectric material has increased to a second dielectric constant, the method comprising the steps of: contacting the at least one surface of the layer of silicon-containing dielectric material with a silicon-containing fluid; and exposing the at least one surface of the layer of silicon-containing dielectric material to an energy source selected from the group consisting of: UV radiation, heat, and an electron beam, wherein the layer of silicon-containing dielectric material has a third dielectric constant that is lower than the second dielectric constant after exposing the layer of silicon-containing dielectric material to the energy source.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: March 10, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Scott Jeffrey Weigel, Mark Leonard O'Neill, Raymond Nicholas Vrtis, Dino Sinatore