Patents by Inventor Raymond P. Mariella, Jr.

Raymond P. Mariella, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130306481
    Abstract: A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.
    Type: Application
    Filed: July 18, 2013
    Publication date: November 21, 2013
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Dietrich A. Dehlinger, Klint A. Rose, Maxim Shusteff, Christopher G. Bailey, Raymond P. Mariella, JR.
  • Patent number: 8524064
    Abstract: A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: September 3, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Dietrich A. Dehlinger, Klint A. Rose, Maxim Shusteff, Christopher G. Bailey, Raymond P. Mariella, Jr.
  • Patent number: 8470537
    Abstract: A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: June 25, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Shea N. Gardner, Raymond P. Mariella, Jr., Allen T. Christian, Jennifer A. Young, David S. Clague
  • Publication number: 20130043170
    Abstract: An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 21, 2013
    Inventors: Klint A. Rose, Karl A. Fisher, Douglas A. Wajda, Raymond P. Mariella, JR., Christopher Bailey, Dietrich Dehlinger, Maxim Shusteff, Byoungsok Jung, Kevin D. Ness
  • Publication number: 20120175258
    Abstract: An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.
    Type: Application
    Filed: May 12, 2011
    Publication date: July 12, 2012
    Applicant: Lawrence Livermore National Security, LLC
    Inventor: Raymond P. Mariella, JR.
  • Publication number: 20110259745
    Abstract: A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.
    Type: Application
    Filed: July 26, 2010
    Publication date: October 27, 2011
    Inventors: Dietrich A. Dehlinger, Klint A. Rose, Maxim Shusteff, Christopher G. Bailey, Raymond P. Mariella, JR.
  • Publication number: 20110124098
    Abstract: A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 26, 2011
    Inventors: Klint A. Rose, Raymond P. Mariella, JR., Christopher G. Bailey, Kevin Dean Ness
  • Publication number: 20110104763
    Abstract: A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.
    Type: Application
    Filed: December 3, 2010
    Publication date: May 5, 2011
    Inventors: Shea N. Gardner, Raymond P. Mariella, JR., Allen T. Christian, Jennifer A. Young, David S. Clague
  • Patent number: 7871799
    Abstract: A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: January 18, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Shea N. Gardner, Raymond P. Mariella, Jr., Allen T. Christian, Jennifer A. Young, David S. Clague
  • Publication number: 20090194420
    Abstract: Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chambers the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Inventors: Raymond P. Mariella, JR., George M. Dougherty, John M. Dzenitis, Robin R. Miles, David S. Clague
  • Patent number: 7452666
    Abstract: A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: November 18, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Raymond P. Mariella, Jr.
  • Patent number: 7090979
    Abstract: A method of making very long, double-stranded synthetic poly-nucleotides. A multiplicity of short oligonucleotides is provided. The short oligonucleotides are sequentially hybridized to each other. Enzymatic ligation of the oligonucleotides provides a contiguous piece of PCR-ready DNA of predetermined sequence.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: August 15, 2006
    Assignee: The Regents of the University of California
    Inventors: Raymond P. Mariella, Jr., Allen T. Christian, James D. Tucker, John M. Dzenitis, Alexandros P. Papavasiliou
  • Patent number: 6866759
    Abstract: A fluidic channel patterned with a series of thin-film electrodes makes it possible to move and concentrate DNA in a fluid passing through the fluidic channel. The DNA has an inherent negative charge and by applying a voltage between adjacent electrodes the DNA is caused to move. By using a series of electrodes, when one electrode voltage or charge is made negative with respect to adjacent electrodes, the DNA is repelled away from this electrode and attached to a positive charged electrode of the series. By sequentially making the next electrode of the series negative, the DNA can be moved to and concentrated over the remaining positive electrodes.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: March 15, 2005
    Assignee: The Regents of the University of California
    Inventors: Robin R. Miles, Amy Wei-Yun Wang, Raymond P. Mariella, Jr.
  • Patent number: 6787104
    Abstract: A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: September 7, 2004
    Assignee: The Regents of the University of California
    Inventor: Raymond P. Mariella, Jr.
  • Patent number: 6761811
    Abstract: A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: July 13, 2004
    Assignee: The Regents of the University of California
    Inventor: Raymond P. Mariella, Jr.
  • Patent number: 6730204
    Abstract: An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: May 4, 2004
    Assignee: The Regents of the University of California
    Inventor: Raymond P. Mariella, Jr.
  • Patent number: 6154276
    Abstract: A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: November 28, 2000
    Assignee: The Regents of the University of California
    Inventor: Raymond P. Mariella, Jr.
  • Patent number: 5589136
    Abstract: A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
    Type: Grant
    Filed: June 20, 1995
    Date of Patent: December 31, 1996
    Assignee: Regents of the University of California
    Inventors: M. Allen Northrup, Raymond P. Mariella, Jr., Anthony V. Carrano, Joseph W. Balch
  • Patent number: 5475487
    Abstract: The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.
    Type: Grant
    Filed: April 20, 1994
    Date of Patent: December 12, 1995
    Assignee: The Regents of the University of California
    Inventors: Raymond P. Mariella, Jr., Gerrit van den Engh, M. Allen Northrup
  • Patent number: 5404026
    Abstract: A single-crystal, multi-layer device incorporating an IR absorbing layer that is compositionally different from the Ga.sub.x Al.sub.1-x Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga.sub.w In.sub.y Al.sub.1-y-w Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga.sub.x Al.sub.1-x Sb, from which they are ejected into vacuum. Because the band alignments of Ga.sub.x Al.sub.1-x Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable.
    Type: Grant
    Filed: January 14, 1993
    Date of Patent: April 4, 1995
    Assignee: Regents of the University of California
    Inventors: Raymond P. Mariella, Jr., Gregory A. Cooper