Patents by Inventor Raymond SARKISSIAN

Raymond SARKISSIAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10976414
    Abstract: A chip-scale coherent lidar system includes a photonic chip that includes a light source, a transmit beam coupler to provide an output signal, and a receive beam coupler to receive a received signal based on a reflection of the output signal by a target. The system also includes a transmit beam steering device to transmit the output signal out of the system, and a receive beam steering device to obtain the received signal into the system. A transmit beam curved mirror reflects the output signal from the transmit beam coupler to the transmit beam steering device. A receive beam curved mirror reflects the received signal from the receive beam steering device to the receive beam coupler. The transmit beam curved mirror and the receive beam curved mirror are formed in a substrate that is heterogeneously integrated with the photonic chip.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: April 13, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Keyvan Sayyah, Oleg Efimov, Pamela Patterson, Raymond Sarkissian, James H. Schaffner, Biqin Huang, David Hammon
  • Patent number: 10928519
    Abstract: A continuous wave (CW) heterodyne light detection and ranging (LIDAR) air velocity sensor system that comprises a first light emitting structure arranged to send a signal light in a first direction in space; a second light emitting structure arranged to produce a local oscillator light having a wavelength different from the wavelength of the signal light by a predetermined wavelength; a receiver arranged to receive light from said first direction in space; and a first optical mixer for mixing the received light with said local oscillator light.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: February 23, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: James H. Schaffner, Richard M. Kremer, Raymond Sarkissian, Andrew C. Keefe, Pamela R. Patterson, Erik S. Daniel, Brian N. Limketkai, Guillermo A. Herrera, Keyvan R. Sayyah, Oleg M. Efimov
  • Patent number: 10914821
    Abstract: A lidar system includes a light source to generate a frequency modulated continuous wave (FMCW) signal, and a waveguide splitter to split the FMCW signal into an output signal and a local oscillator (LO) signal. A transmit coupler provides the output signal for transmission. A receive lens obtains a received signal resulting from reflection of the output signal by a target. A waveguide coupler combines the received signal and the LO signal into a first combined signal and a second combined signal. A first phase modulator and second phase modulator respectively adjust a phase of the first combined signal and the second combined signal to provide a first phase modulated signal and a second phase modulated signal to a first photodetector and a second photodetector. A processor processes a first electrical signal and a second electrical signal from the first and second photodetectors to obtain information about the target.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: February 9, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Pamela R. Patterson, Keyvan Sayyah, Oleg Efimov, Raymond Sarkissian, James H. Schaffner, Biqin Huang, David Hammon
  • Patent number: 10845550
    Abstract: A laser receiver device and an associated input coupler are provided. In this regard, a chip-scale laser receiver device is provided that includes an input coupler that is configured to receive a gaussian beam. The input coupler includes a first waveguide having an optically-transparent material and a second waveguide coupled to the first waveguide. The second waveguide has a tapered configuration that tapers to a predetermined width across a length of not less than 500 micrometers. The input coupler further includes a third waveguide coupled to the second waveguide. The third waveguide has a tapered configuration that tapers to a predetermined width across a length of not less than 250 micrometers. The chip-scale laser receiver device further includes a bus optical waveguide coupled to receive a signal output from the input coupler, and to output a wavelength-multiplexed laser signal.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: November 24, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Oleg M. Efimov, Biqin Huang, Pamela R. Patterson, Raymond Sarkissian, Keyvan Sayyah
  • Publication number: 20200088884
    Abstract: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip, and a laser integrated into the photonic chip. The laser has a front facet located at a first aperture of the photonic chip to direct a transmitted light beam into free space. A reflected light beam that is a reflection of the transmitted light beam is received at the photonic chip and a parameter of the object is determined from a comparison of the transmitted light beam and the reflected light beam. A navigation system operates the vehicle with respect to the object based on a parameter of the object.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 19, 2020
    Inventors: Keyvan Sayyah, Oleg Efimov, Biqin Huang, Raymond Sarkissian, James H. Schaffner, David Hammon, Richard Kremer, Timothy J. Talty, Michael Mulqueen, Pamela R. Patterson
  • Publication number: 20200088845
    Abstract: A Lidar system, photonic chip and method of detecting an object is disclosed. The Lidar system includes the photonic chip. The photonic chip includes a laser and a local oscillator waveguide. The laser is integrated into the photonic chip and generates a leakage energy at a back facet of the laser for use as a local oscillator beam for the photonic chip. The local oscillator waveguide receives the leakage energy as the local oscillator beam. The laser further generates a transmitted light beam through a front facet of the photonic chip, combining the leakage energy with a reflection of the transmitted light beam form an object, and detects a combination of the reflected light beam and the leakage energy to determine a parameter of the object.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 19, 2020
    Inventors: Timothy J. Talty, Oleg Efimov, Michael Mulqueen, Keyvan Sayyah, Pamela R. Patterson, Raymond Sarkissian, James H. Schaffner, David Hammon, Biqin Huang
  • Patent number: 10564263
    Abstract: A LIDAR system, optical coupler for a LIDAR system and method of optical communication. The LIDAR system includes an optical coupler having a chip-side face in optical communication with a photonic chip and a scanner-side face in optical communication with a scanner, the optical coupler comprising a polarization rotator and a birefringent wedge. A first beam of light is transmitted from the first location toward a chip-side face of an optical coupler to direct the first beam of light, via the optical coupler, along an optical path at a scanner-side face of the optical coupler. A second beam of light is received along the optical path at the scanner-side face and directed the second beam of light toward a second location.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: February 18, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Oleg Efimov, Raymond Sarkissian, Keyvan Sayyah, David Hammon
  • Publication number: 20200049801
    Abstract: A chip-scale LIDAR (light detection and ranging) system, optical package and LIDAR platform. The system includes a photonic chip, a laser associated with the photonic chip, an optical circulator, and a MEMS scanner. The laser, the optical circulator and the MEMS scanner are collinear. The photonic chip includes an edge coupler. The optical package includes a housing having an aperture, and a platform within the housing. The platform includes the laser, an optical circulator, and MEMS scanner.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Keyvan Sayyah, Pamela R. Patterson, Raymond Sarkissian, Richard Kremer, Oleg Efimov
  • Publication number: 20190235163
    Abstract: A method of manufacturing an optical waveguide includes: aligning a silicon on insulator wafer and a target substrate, the target substrate including a benzocyclobutene layer; bonding a silicon layer of the silicon on insulator wafer with the benzocyclobutene layer of the target substrate by using heat and pressure; and removing the silicon on insulator wafer such that the silicon layer remains on the benzocyclobutene layer.
    Type: Application
    Filed: November 9, 2018
    Publication date: August 1, 2019
    Inventors: Pamela R. Patterson, Raymond Sarkissian, Biqin Huang, Keyvan R. Sayyah, Oleg M. Efimov
  • Publication number: 20190018112
    Abstract: A chip-scale coherent lidar system includes a photonic chip that includes a light source, a transmit beam coupler to provide an output signal, and a receive beam coupler to receive a received signal based on a reflection of the output signal by a target. The system also includes a transmit beam steering device to transmit the output signal out of the system, and a receive beam steering device to obtain the received signal into the system. A transmit beam curved mirror reflects the output signal from the transmit beam coupler to the transmit beam steering device. A receive beam curved mirror reflects the received signal from the receive beam steering device to the receive beam coupler. The transmit beam curved mirror and the receive beam curved mirror are formed in a substrate that is heterogeneously integrated with the photonic chip.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 17, 2019
    Inventors: Keyvan Sayyah, Oleg Efimov, Pamela Patterson, Raymond Sarkissian, James H. Schaffner, Biqin Huang, David Hammon
  • Publication number: 20190018139
    Abstract: A chip-scale coherent lidar system includes a master oscillator integrated on a chip to simultaneously provide a signal for transmission and a local oscillator (LO) signal. The system also includes a beam steering device to direct an output signal obtained from the signal for transmission out of the system, and a combiner on the chip to combine the LO signal and a return signal resulting from a reflection of the output signal by a target. One or more photodetectors obtain a result of interference between the LO signal and the return signal to determine information about the target.
    Type: Application
    Filed: April 20, 2018
    Publication date: January 17, 2019
    Inventors: Keyvan Sayyah, Raymond Sarkissian, Oleg Efimov, Pamela R. Patterson
  • Publication number: 20190018198
    Abstract: A photonic chip, an edge coupler for an integrated photonic system and a method for coupling a laser to the photonic chip. The edge coupler includes a waveguide of the photonic system having a longitudinal axis. The longitudinal axis of a waveguide of the photonic chip is aligned with a longitudinal axis of the laser. The facet of the waveguide facing the laser is at a non-perpendicular angle with respect to the longitudinal axis. Light is transmitted from the laser into the waveguide via the angled facet.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 17, 2019
    Inventors: Keyvan Sayyah, Oleg Efimov, Pamela R. Patterson, Raymond Sarkissian, Biqin Huang
  • Publication number: 20190018140
    Abstract: A lidar system includes a laser diode to provide a frequency modulated continuous wave (FMCW) signal, and a current source to provide a drive signal that modulates the laser diode. The current source is controlled to pre-distort the drive signal to provide a linear FMCW signal. The lidar system also includes a splitter to split the FMCW signal into an output signal and a local oscillator (LO) signal, a transmit coupler to transmit the output signal, a receive coupler to obtain a received signal based on reflection of the output signal by a target, and a combiner to combine the received signal with the LO signal into first and second combined signals. A first and second photodetector respectively receive the first and second combined signals and output first and second electrical signals from which a beat signal that indicates the pre-distortion needed for the drive signal is obtained.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 17, 2019
    Inventors: Raymond Sarkissian, Keyvan Sayyah
  • Publication number: 20190018121
    Abstract: A lidar system includes a light source to generate a frequency modulated continuous wave (FMCW) signal, and a waveguide splitter to split the FMCW signal into an output signal and a local oscillator (LO) signal. A transmit coupler provides the output signal for transmission. A receive lens obtains a received signal resulting from reflection of the output signal by a target. A waveguide coupler combines the received signal and the LO signal into a first combined signal and a second combined signal. A first phase modulator and second phase modulator respectively adjust a phase of the first combined signal and the second combined signal to provide a first phase modulated signal and a second phase modulated signal to a first photodetector and a second photodetector. A processor processes a first electrical signal and a second electrical signal from the first and second photodetectors to obtain information about the target.
    Type: Application
    Filed: June 25, 2018
    Publication date: January 17, 2019
    Inventors: Keyvan Sayyah, Oleg Efimov, Pamela R. Patterson, Raymond Sarkissian, James H. Schaffner, Biqin Huang, David Hammon
  • Publication number: 20190018114
    Abstract: A lidar system includes a photonic chip including a light source and a transmit beam coupler to provide an output signal for transmission. The output signal is a frequency modulated continuous wave (FMCW) signal. A transmit beam steering device transmits the output signal from the transmit beam coupler of the photonic chip. A receive beam steering device obtains a reflection of the output signal by a target and provides the reflection as a received signal to a receive beam coupler of the photonic chip. The photonic chip, the transmit beam steering device, and the receive beam steering device are heterogeneously integrated into an optical engine.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 17, 2019
    Inventors: Pamela R. Patterson, Biqin Huang, James H. Schaffner, Keyvan Sayyah, Oleg Efimov, Raymond Sarkissian
  • Publication number: 20190018120
    Abstract: A LIDAR system, optical coupler for a LIDAR system and method of optical communication. The LIDAR system includes an optical coupler having a chip-side face in optical communication with a photonic chip and a scanner-side face in optical communication with a scanner, the optical coupler comprising a polarization rotator and a birefringent wedge. A first beam of light is transmitted from the first location toward a chip-side face of an optical coupler to direct the first beam of light, via the optical coupler, along an optical path at a scanner-side face of the optical coupler. A second beam of light is received along the optical path at the scanner-side face and directed the second beam of light toward a second location.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 17, 2019
    Inventors: Oleg Efimov, Raymond Sarkissian, Keyvan Sayyah, David Hammon
  • Publication number: 20190018113
    Abstract: A LIDAR system, LIDAR chip and method of manufacturing a LIDAR chip. The LIDAR system includes a photonic chip configured to transmit a transmitted light beam and to receive a reflected light beam, a scanner for directing the transmitted light beam towards a direction in space and receiving the reflected light beam from the selected direction, and a fiber-based optical coupler. The photonic chip and the scanner are placed on a semiconductor integrated platform (SIP). The fiber-based optical coupler is placed on top of the photonic chip to optically couple to the photonic chip for directing the a transmitted light beam from the photonic chip to the scanner and for directing a reflected light beam from the scanner to the photonic chip.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 17, 2019
    Inventors: Keyvan Sayyah, Oleg Efimov, Pamela R. Patterson, Raymond Sarkissian, James H. Schaffner, Biqin Huang, David Hammon
  • Publication number: 20180356528
    Abstract: A continuous wave (CW) heterodyne light detection and ranging (LIDAR) air velocity sensor system that comprises a first light emitting structure arranged to send a signal light in a first direction in space; a second light emitting structure arranged to produce a local oscillator light having a wavelength different from the wavelength of the signal light by a predetermined wavelength; a receiver arranged to receive light from said first direction in space; and a first optical mixer for mixing the received light with said local oscillator light.
    Type: Application
    Filed: April 6, 2018
    Publication date: December 13, 2018
    Applicant: HRL Laboratories, LLC
    Inventors: James H. Schaffner, Richard M. Kremer, Raymond Sarkissian, Andrew C. Keefe, Pamela R. Patterson, Erik S. Daniel, Brian N. Limketkai, Guillermo A. Herrera, Keyvan R. Sayyah, Oleg M. Eimov
  • Patent number: 9379281
    Abstract: A light emitting structure may include a light emitting element(s) arranged in a transparent dielectric material. The light emitting element(s) may include a semiconductor nanostructure arranged in a display orientation different from a growth orientation of the semiconductor nanostructure. The light emitting element(s) may also include a well layer on the semiconductor nanostructure. The light emitting element(s) may further include a capping layer on the well layer. The light emitting structure may also include a contact layer coupled to the light emitting element(s).
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: June 28, 2016
    Inventor: Raymond Sarkissian
  • Publication number: 20150311383
    Abstract: A light emitting structure may include a light emitting element(s) arranged in a transparent dielectric material. The light emitting element(s) may include a semiconductor nanostructure arranged in a display orientation different from a growth orientation of the semiconductor nanostructure. The light emitting element(s) may also include a well layer on the semiconductor nanostructure. The light emitting element(s) may further include a capping layer on the well layer. The light emitting structure may also include a contact layer coupled to the light emitting element(s).
    Type: Application
    Filed: April 24, 2015
    Publication date: October 29, 2015
    Inventor: Raymond SARKISSIAN