Patents by Inventor Raymond Tabler

Raymond Tabler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140225030
    Abstract: A method of controlling the crystallinity of a silicon powder may include heating a reactor to a temperature of no more than 650° C., and flowing a feed gas comprising silane and a carrier gas into the reactor at a molar gas flux of from about 5 mol/min/m2 to about 25 mol/min/m2. The silane decomposes to form a silicon powder having a controlled crystallinity and comprising non-crystalline silicon. According to another embodiment, a method of controlling the crystallinity of a silicon powder may include flowing a feed gas comprising silane and a carrier gas into a heated reactor at a molar gas flux of from about 5 mol/min/m2 to about 25 mol/min/m2, and maintaining an internal reactor pressure of about 2 atm or less during the flowing of the feed gas into the heated reactor. The silane decomposes to form a silicon powder having a controlled crystallinity and comprising non-crystalline silicon.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 14, 2014
    Inventors: Max Dehtiar, William Herron, Byung K. Hwang, Jennifer Larimer, Mark Schrauben, Raymond Tabler
  • Publication number: 20140220347
    Abstract: An electrode composition comprises a silicon powder comprising non-crystalline and crystalline silicon, where the crystalline silicon is present in the silicon powder at a concentration of no more than about 20 wt. %. An electrode for an electrochemical cell comprises an electrochemically active material comprising non-crystalline silicon and crystalline silicon, where the non-crystalline silicon and the crystalline silicon are present prior to cycling of the electrode. A method of controlling the crystallinity of a silicon powder includes heating a reactor to a temperature of no more than 650° C. and flowing a feed gas comprising silane and a carrier gas into the reactor while maintaining an internal reactor pressure of about 2 atm or less. The silane decomposes to form a silicon powder having a controlled crystallinity and comprising non-crystalline silicon.
    Type: Application
    Filed: August 14, 2012
    Publication date: August 7, 2014
    Applicants: Dow Corning Corporation, Hemlock Semiconductor Corporation, Dow Corning Toray Co., Ltd.
    Inventors: Max Dehtiar, Paul Fisher, Matthew A. Gave, William Herron, Takakazu Hino, Byung K. Hwang, Jennifer Larimer, Jeong Yong Lee, Joel P. McDonald, Mark Schrauben, Raymond Tabler
  • Patent number: 7385001
    Abstract: High viscosity silicone compositions such as silicone gums, silicone rubbers, silicone elastomers, and silicone resins, are emulsified by mechanical inversion in which silicone water-in-oil (W/O) emulsions are inverted to silicone oil-in-water (O/W) emulsions. Silicone resins with a viscosity of about one billion centistoke (mm2/s), i.e., 1,000,000,000 centistoke (mm2/s) have been emulsified. These silicone O/W emulsions are useful in personal care products where they are capable of providing improved aesthetics. They are also useful in products used in the paper industry and medical industry. The silicone O/W emulsions are easier to handle than the high viscosity silicone in the emulsion, which enables the emulsions to mixed with other emulsions or other water-soluble ingredients.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: June 10, 2008
    Assignee: Dow Corning Corporation
    Inventors: Anne Katja Shim, Raymond Tabler, David Tascarella
  • Publication number: 20060135626
    Abstract: High viscosity silicone compositions such as silicone gums, silicone rubbers, silicone elastomers, and silicone resins, are emulsified by mechanical inversion in which silicone water-in-oil (W/O) emulsions are inverted to silicone oil-in-water (O/W) emulsions. Silicone resins with a viscosity of about one billion centistoke (mm2/s), i.e., 1,000,000,000 centistoke (mm2/s) have been emulsified. These silicone O/W emulsions are useful in personal care products where they are capable of providing improved aesthetics. They are also useful in products used in the paper industry and medical industry. The silicone O/W emulsions are easier to handle than the high viscosity silicone in the emulsion, which enables the emulsions to mixed with other emulsions or other water-soluble ingredients.
    Type: Application
    Filed: April 19, 2004
    Publication date: June 22, 2006
    Inventors: Anne Shim, Raymond Tabler, David Tascarella