Patents by Inventor Raymond W. Rice

Raymond W. Rice has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973566
    Abstract: Systems, devices, and methods are provided for a wireless radio repeater for integration in an electric power distribution system. Such a system may include an electrical measurement device and a wireless radio repeater. The electrical measurement device may be installed on a power line of an electric power distribution system, obtain an electrical measurement of the power line of the electric power distribution system, and transmit a wireless message indicating the electrical measurement. The wireless radio repeater may receive the wireless message from the electrical measurement device and re-transmit the wireless message to a control system of the electric power distribution system or to another wireless radio repeater to assist in sending the wireless message to the control system of the electric power distribution system.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: April 30, 2024
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Miralem Cosic, Raymond W. Rice
  • Publication number: 20230113010
    Abstract: A wireless radio repeater includes an antenna configured to receive a message associated with an electric power delivery system. The wireless radio repeater also includes circuitry configured to receive electrical measurement data, identify a condition of the electric power delivery system based on the electrical measurement data, and cause the antenna to re-transmit the message received via the antenna in response to identifying the condition based on the electrical measurement data.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 13, 2023
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Miralem Cosic, Raymond W. Rice
  • Patent number: 11614498
    Abstract: The present disclosure relates to a wireless neutral current sensor (WNCS) for monitoring a neutral cable of a capacitor bank. The WNCS may include a power storage device that provides power to allow the WNCS to send a test signal to a capacitor bank controller (CBC) of the capacitor bank to confirm operation of the WNCS during commissioning. The WNCS may include processing and communication circuitry that, during operation, detects an electrical characteristic on the neutral cable. The processing and communication circuitry may provide a message indicating the electrical characteristic to the CBC.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: March 28, 2023
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Kei Hao, Shankar V. Achanta, Raymond W. Rice
  • Patent number: 11567109
    Abstract: Systems, methods, and devices are provided to control an electrical component of an electric power distribution system with an intelligent electronic device using electrical measurements from a wireless electrical measurement device located away from the electrical component. One such system includes a capacitor bank on a lateral of an electric power distribution system, a first set of one or more wireless electrical measurement devices that obtain one or more electrical measurements of a first feeder of the electric power distribution system, and a capacitor bank controller. The capacitor bank controller may use the one or more electrical measurements of the first feeder to control the capacitor bank on the lateral.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: January 31, 2023
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Jeremy William Blair, Raymond W. Rice
  • Patent number: 11549996
    Abstract: The present disclosure relates to a capacitor bank controller that automatically determines the size of a capacitor bank using wireless current sensors. The capacitor bank controller determines a first capacitor bank size estimate using voltage and current measurements from when the capacitor bank is open and when the capacitor bank is closed a first time. The capacitor bank controller determines a second capacitor bank size estimate by using voltage measurements and current measurements from when the capacitor bank is open and when the capacitor bank is closed a second time. The capacitor bank controller determines a filtered capacitor bank size estimate based on the first capacitor bank estimate and the second capacitor bank estimate and controls operation of the capacitor bank based on the filtered capacitor bank size estimate.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: January 10, 2023
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Kei Hao, Raymond W. Rice, James Mobley
  • Patent number: 11397198
    Abstract: The present disclosure pertains to systems and methods for measuring electrical parameters in an electric power system. In one embodiment, a system may include a line-mounted wireless current sensor comprising a current monitoring subsystem to generate a current measurement of an alternating current flow through an electrical conductor. The line-mounted wireless current sensor may harvest power from the electrical conductor. A processing subsystem may generate a message comprising the current measurement, and the message may be transmitted at a synchronization point using a wireless communication subsystem. An intelligent electronic device (IED) may receive the message. The IED may further generate a voltage and generate a phasor based on the current measurement and the voltage measurement. A control action subsystem may implement a control action (e.g., selectively connecting or disconnecting a capacitor bank) based on the phasor.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: July 26, 2022
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Raymond W. Rice, Benjamin T. Rowland, James Mobley, Shankar V. Achanta
  • Publication number: 20220116103
    Abstract: Systems, devices, and methods are provided for a wireless radio repeater for integration in an electric power distribution system. Such a system may include an electrical measurement device and a wireless radio repeater. The electrical measurement device may be installed on a power line of an electric power distribution system, obtain an electrical measurement of the power line of the electric power distribution system, and transmit a wireless message indicating the electrical measurement. The wireless radio repeater may receive the wireless message from the electrical measurement device and re-transmit the wireless message to a control system of the electric power distribution system or to another wireless radio repeater to assist in sending the wireless message to the control system of the electric power distribution system.
    Type: Application
    Filed: October 20, 2020
    Publication date: April 14, 2022
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Miralem Cosic, Raymond W. Rice
  • Patent number: 11289900
    Abstract: The present disclosure pertains to detection of a broken conductor in an electric power system. In one embodiment, a broken conductor detector may be configured to be mounted to an electrical conductor and may comprise a communication subsystem configured to transmit a signal configured to indicate that the conductor is broken. A sensor may determine a plurality of vectors. A processing subsystem may be configured to receive the plurality of vectors from the sensor and to identify when the vector is outside of a range defined by a threshold value. The processing subsystem may determine that the conductor is falling based on the plurality of vectors remaining outside of the threshold for a period of time determined by the timer subsystem. A signal may be transmitted by the communication subsystem to indicate that the conductor is falling.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: March 29, 2022
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: James Mobley, Shankar V. Achanta, Raymond W. Rice
  • Patent number: 11105834
    Abstract: The present disclosure pertains to a line-powered current measurement system to mount to an electrical conductor and related methods. In one embodiment, a system may comprise a current transformer to electrically couple to an electrical conductor and to generate a secondary current proportional to a primary current in the conductor. A power harvesting subsystem may harvest power from the secondary current in a first configuration. A switching subsystem may transition the line-powered current measurement device between the first configuration and a second configuration, in which a current measurement subsystem generates a measurement of the secondary current. The switching subsystem may provide the secondary current to the power harvesting subsystem in the first configuration and may bypasses the power harvesting subsystem in the second configuration. A communication subsystem may transmit the measurement of the secondary current to a receiver device.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: August 31, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: James Mobley, Raymond W. Rice
  • Patent number: 11067617
    Abstract: A line-mounted device is used to provide power system signals to a device for detecting a fault and calculating a fault location using a traveling wave launched thereby. Current at the line-mounted device is used to separate incident and reflected traveling waves at a terminal. Times and polarities of traveling waves passing the line-mounted device and the terminal are compared to determine if the fault is located between the terminal and line-mounted device or at a location beyond the terminal or line-mounted device. Voltage of the traveling wave may be calculated using currents from the line-mounted device.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 20, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Raymond W. Rice
  • Patent number: 11031812
    Abstract: The present disclosure relates to powering distributed sensors used to monitor electrical and/or environmental conditions and to powering other equipment associated with electric power systems. In one embodiment, a system may be used to mount a sensor in proximity to a reference conductor. An electric field power conversion subsystem may generate a usable electric potential from an electric field created by the electric power system and existing between the reference conductor and another conductor (e.g., another phase conductor, a ground conductor). The sensor powered by the usable electric potential may provide a measurement of a condition associated with the electric power system. A communication subsystem powered by the usable electric potential may communicate the measurement of the condition to a monitoring system.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: June 8, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Joe Baylon, Timothy M. Minteer, David Kenny, James Mobley, Johnny J. Moore, Raymond W. Rice, Naiden K. Spasov, Eric M. Sawyer
  • Publication number: 20210109147
    Abstract: The present disclosure pertains to systems and methods for monitoring and protecting an electric power system. In one embodiment, a system may comprise line-mounted wireless current transformers to measure at least one parameter of an alternating current (AC), receive a synchronization signal at which to measure the AC, and send a message comprising the measured AC. The system may also comprise an intelligent electronic device (IED) to send the synchronization signal to and receive the messages from the line-mount wireless current transformers, determine whether a high-impedance fault (HiZ) exists between the line-mounted wireless current transformers, and implement a control action based on the existence of the HiZ fault.
    Type: Application
    Filed: November 19, 2019
    Publication date: April 15, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Normann Fischer, Raymond W. Rice, Ravindra P. Mulpuri, James Mobley
  • Publication number: 20210109138
    Abstract: Systems, methods, and devices are provided to control an electrical component of an electric power distribution system with an intelligent electronic device using electrical measurements from a wireless electrical measurement device located away from the electrical component. One such system includes a capacitor bank on a lateral of an electric power distribution system, a first set of one or more wireless electrical measurement devices that obtain one or more electrical measurements of a first feeder of the electric power distribution system, and a capacitor bank controller. The capacitor bank controller may use the one or more electrical measurements of the first feeder to control the capacitor bank on the lateral.
    Type: Application
    Filed: January 29, 2020
    Publication date: April 15, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Jeremy William Blair, Raymond W. Rice
  • Publication number: 20210102985
    Abstract: The present disclosure relates to a wireless neutral current sensor (WNCS) for monitoring a neutral cable of a capacitor bank. The WNCS may include a power storage device that provides power to allow the WNCS to send a test signal to a capacitor bank controller (CBC) of the capacitor bank to confirm operation of the WNCS during commissioning. The WNCS may include processing and communication circuitry that, during operation, detects an electrical characteristic on the neutral cable. The processing and communication circuitry may provide a message indicating the electrical characteristic to the CBC.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 8, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Kei Hao, Shankar V. Achanta, Raymond W. Rice
  • Patent number: 10962608
    Abstract: The present disclosure pertains to systems and methods for monitoring and protecting an electric power system. In one embodiment, a system may comprise line-mounted wireless current transformers to measure at least one parameter of an alternating current (AC), receive a synchronization signal at which to measure the AC, and send a message comprising the measured AC. The system may also comprise an intelligent electronic device (IED) to send the synchronization signal to and receive the messages from the line-mount wireless current transformers, determine whether a high-impedance fault (HiZ) exists between the line-mounted wireless current transformers, and implement a control action based on the existence of the HiZ fault.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: March 30, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Normann Fischer, Raymond W. Rice, Ravindra P. Mulpuri, James Mobley
  • Publication number: 20210088561
    Abstract: The present disclosure pertains to a line-powered current measurement system to mount to an electrical conductor and related methods. In one embodiment, a system may comprise a current transformer to electrically couple to an electrical conductor and to generate a secondary current proportional to a primary current in the conductor. A power harvesting subsystem may harvest power from the secondary current in a first configuration. A switching subsystem may transition the line-powered current measurement device between the first configuration and a second configuration, in which a current measurement subsystem generates a measurement of the secondary current. The switching subsystem may provide the secondary current to the power harvesting subsystem in the first configuration and may bypasses the power harvesting subsystem in the second configuration. A communication subsystem may transmit the measurement of the secondary current to a receiver device.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: James Mobley, Raymond W. Rice
  • Publication number: 20210091559
    Abstract: The present disclosure pertains to detection of a broken conductor in an electric power system. In one embodiment, a broken conductor detector may be configured to be mounted to an electrical conductor and may comprise a communication subsystem configured to transmit a signal configured to indicate that the conductor is broken. A sensor may determine a plurality of vectors. A processing subsystem may be configured to receive the plurality of vectors from the sensor and to identify when the vector is outside of a range defined by a threshold value. The processing subsystem may determine that the conductor is falling based on the plurality of vectors remaining outside of the threshold for a period of time determined by the timer subsystem. A signal may be transmitted by the communication subsystem to indicate that the conductor is falling.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: James Mobley, Shankar V. Achanta, Raymond W. Rice
  • Publication number: 20210055333
    Abstract: The present disclosure pertains to systems and methods for retrofitting data collection systems in an electrical power system. In one embodiment, a retrofit system includes a wireless current sensor. The wireless current sensor includes a current monitoring subsystem to generate a digitized representation of a current measurement of an alternating current signal in an electrical conductor, a power harvesting subsystem to harvest power from the electrical conductor, and a first wireless communication subsystem to transmit the digitized representation of the current measurement. An analog-to-digital converter includes at least one analog input in electrical communication with a voltage signal associated with the electrical conductor and a digital output to generate a digitized representation of the voltage signal. An intelligent electronic device in communication with a second wireless communication subsystem and the ADC may provide the digitized representations to a main processor.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: James Mobley, Raymond W. Rice
  • Publication number: 20210055332
    Abstract: The present disclosure pertains to systems and methods for measuring electrical parameters in an electric power system. In one embodiment, a system may include a line-mounted wireless current sensor comprising a current monitoring subsystem to generate a current measurement of an alternating current flow through an electrical conductor. The line-mounted wireless current sensor may harvest power from the electrical conductor. A processing subsystem may generate a message comprising the current measurement, and the message may be transmitted at a synchronization point using a wireless communication subsystem. An intelligent electronic device (IED) may receive the message. The IED may further generate a voltage and generate a phasor based on the current measurement and the voltage measurement. A control action subsystem may implement a control action (e.g., selectively connecting or disconnecting a capacitor bank) based on the phasor.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Raymond W. Rice, Benjamin T. Rowland, James Mobley, Shankar V. Achanta
  • Publication number: 20200244368
    Abstract: The present disclosure pertains to systems and methods for low-power optical transceivers. In one embodiment, a low-power optical transceiver may include a microcontroller, an optical receiver, and an optical transmitter in communication with and controlled by the microcontroller. The optical receiver may include a photodetector configured to receive a first optical representation of a first signal to be received and to generate an electrical representation of the first signal. An amplifier may amplify the electrical representation of the first signal, and an output in electrical communication with the amplifier may generate an electrical output. The optical transmitter may include a laser diode configured to generate a second optical representation of a second signal to be transmitted. The microcontroller may be configured to control an output power of the laser diode.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: David M. Rector, Raymond W. Rice, Steven Watts, Vince B. Hadley