Patents by Inventor Raymond Woo

Raymond Woo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963909
    Abstract: A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: April 23, 2024
    Assignee: AMO Development, LLC
    Inventors: John S. Hart, David A. Dewey, Georg Schuele, Phillip H. Gooding, Christine J. Beltran, Javier G. Gonzalez, Katrina B. Sheehy, Jeffrey A. Golda, Raymond Woo, Madeleine C. O'Meara, Noah Bareket, Thomas Z. Teisseyre, Bruce Woodley
  • Patent number: 11960438
    Abstract: A stacked processor-plus-memory device includes a processing die with an array of processing elements of an artificial neural network. Each processing element multiplies a first operand—e.g. a weight—by a second operand to produce a partial result to a subsequent processing element. To prepare for these computations, a sequencer loads the weights into the processing elements as a sequence of operands that step through the processing elements, each operand stored in the corresponding processing element. The operands can be sequenced directly from memory to the processing elements or can be stored first in cache. The processing elements include streaming logic that disregards interruptions in the stream of operands.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: April 16, 2024
    Assignee: Rambus Inc.
    Inventors: Steven C. Woo, Michael Raymond Miller
  • Publication number: 20240119989
    Abstract: Row hammer is mitigated by issuing, to a memory device, mitigation operation (MOP) commands in order to cause the refresh of rows at a specified vicinity of a suspected aggressor row. These mitigation operation commands are each associated with respective row addresses that indicate the suspected aggressor row and an indicator of which neighbor row in the vicinity of the suspected aggressor row is to be refreshed. The mitigation operation commands are issued in response to a fixed number of activate commands. The suspected aggressor row is selected by randomly choosing, with equal probability, one of the N previous activate commands to supply its associated row address as the suspected aggressor row address. The neighbor row may be selected randomly with a probability that diminishes inversely with the distance between the suspected aggressor row and the neighbor row.
    Type: Application
    Filed: October 2, 2023
    Publication date: April 11, 2024
    Inventors: Steven C. WOO, Michael Raymond MILLER
  • Patent number: 11934654
    Abstract: An integrated circuit (IC) memory device includes an array of storage cells configured into multiple banks. Interface circuitry receives refresh commands from a host memory controller to refresh the multiple banks for a first refresh mode. On-die refresh control circuitry selectively generates local refresh commands to refresh the multiple banks in cooperation with the host memory controller during a designated hidden refresh interval in a second refresh mode. Mode register circuitry stores a value indicating whether the on-die refresh control circuitry is enabled for use during the second refresh mode. The interface circuitry includes backchannel control circuitry to transmit a corrective action control signal during operation in the second refresh mode.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: March 19, 2024
    Assignee: Rambus Inc.
    Inventors: Michael Raymond Miller, Steven C. Woo, Thomas Vogelsang
  • Publication number: 20240086325
    Abstract: A high-capacity cache memory is implemented by multiple heterogenous DRAM dies, including a dedicated tag-storage DRAM die architected for low-latency tag-address retrieval and thus rapid hit/miss determination, and one or more capacity-optimized cache-line DRAM dies that render a net cache-line storage capacity orders of magnitude beyond that of state-of-the art SRAM cache implementations. The tag-storage die serves double-duty in some implementations, yielding rapid tag hit/miss determination for cache-line read/write requests while also serving as a high-capacity snoop-filter in a memory-sharing multiprocessor environment.
    Type: Application
    Filed: September 5, 2023
    Publication date: March 14, 2024
    Inventors: Taeksang Song, Michael Raymond Miller, Steven C. Woo
  • Patent number: 11922066
    Abstract: An interconnected stack of one or more Dynamic Random Access Memory (DRAM) die has a base logic die and one or more custom logic or processor die. The processor logic die snoops commands sent to and through the stack. In particular, the processor logic die may snoop mode setting commands (e.g., mode register set—MRS commands). At least one mode setting command that is ignored by the DRAM in the stack is used to communicate a command to the processor logic die. In response the processor logic die may prevent commands, addresses, and data from reaching the DRAM die(s). This enables the processor logic die to send commands/addresses and communicate data with the DRAM die(s). While being able to send commands/addresses and communicate data with the DRAM die(s), the processor logic die may execute software using the DRAM die(s) for program and/or data storage and retrieval.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: March 5, 2024
    Assignee: Rambus Inc.
    Inventors: Thomas Vogelsang, Michael Raymond Miller, Steven C. Woo
  • Patent number: 11883329
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye, A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: AMO Development, LLC
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Publication number: 20230225665
    Abstract: Described herein are systems and methods for the detection and monitoring of delirium in a subject. Other neurological conditions may also be detected and monitored. The systems may include a data module configured to obtain a plurality of electroencephalography (EEG) signals collected from a subject. The systems may also include a processing module in communication with the data module. The processing module may be configured to process the data to detect and monitor delirium and/or one or more other neurological conditions that the subject is experiencing or likely to experience. The processing module may also generate indications or assessments for delirium and/or for each neurological condition at an individual level, or optionally, between two or more related neurological conditions.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 20, 2023
    Inventors: Baharan KAMOUSI, Suganya Karunakaran, Archit Gupta, Raymond Woo, Xingjuan Chao
  • Patent number: 11406536
    Abstract: Embodiments of this disclosure disclose an imaging system, including an eye interface device, a scanning assembly, a beam source, a free-floating mechanism, and a detection assembly. The beam source generates an electromagnetic radiation beam. The detection assembly generates a signal indicative of an intensity of a portion of the electromagnetic radiation beam reflected from the focal point location. A subsequent focal point of the electromagnetic radiation beam may be adjusted per the measured intensity signal. In some embodiments, an intensity signal below a lower threshold value may suggest a depth increase for a subsequent focal point. An intensity signal above an upper threshold value may suggest a depth decrease for a subsequent focal point. And, an intensity signal between the lower and upper thresholds may suggest a depth be maintained for a subsequent focal point. The focal point may be adjusted after each pulse or after a plurality of pulses.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: August 9, 2022
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Raymond Woo, John S. Hart
  • Publication number: 20220117535
    Abstract: An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Josef PARVIZI, Xingjuan CHAO, Bradley G. BACHELDER, Raymond WOO, Mathew A. HERRON, Vahid SAADAT, Alexander M. GRANT, Jianchun YI
  • Publication number: 20220117536
    Abstract: An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Josef PARVIZI, Xingjuan CHAO, Bradley G. BACHELDER, Raymond WOO, Mathew A. HERRON, Vahid SAADAT, Alexander M. GRANT, Jianchun YI
  • Publication number: 20220110520
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Publication number: 20220031248
    Abstract: Systems, devices, and methods are provided to assess connection quality between the electrodes of a bioelectrical signal measurement and/or electrical stimulation device and the tissue, typically skin, of the subject. A test signal is provided to a first electrode, voltage differences between the first electrode and additional electrodes are determined, an impedance of the first electrode is determined based on the voltages differences, and the determined impedance indicates connection quality. This process is typically repeated for all of the electrodes to determine connection quality. The user or subject can be alerted if the connection quality is poor, and the bioelectrical signal that is recorded can be provided with data points indicating connection quality during the signal recording.
    Type: Application
    Filed: March 16, 2021
    Publication date: February 3, 2022
    Inventors: Alexander M. GRANT, Jianchun YI, Bradley G. BACHELDER, Raymond WOO, Josef PARVIZI, Xingjuan CHAO
  • Patent number: 11229357
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 25, 2022
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Publication number: 20210307606
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 7, 2021
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Publication number: 20210267539
    Abstract: Systems and methods for sonifying electrical signals obtained from a living subject, particularly EEG signals, are disclosed. A time-domain signal representing the activity of an organ is obtained. A voltage of the time-domain signal over a time block is determined. An acoustic signal based on the time-domain signal over the time block is produced. The acoustic signal comprises one or more audibly discernible variations representative of the activity of the organ. If the determined voltage is over a threshold voltage, the time-domain signal is squelched over at least a portion of the time-block as the acoustic signal is produced. The time-domain signal can be squelched by ramping down the signal as an input to produce the acoustic signal. The frequency spectrum of the acoustic signal can also be adjusted as it is produced, such as by flattening the signal and/or attenuating high frequencies along the frequency spectrum of the signal.
    Type: Application
    Filed: October 28, 2020
    Publication date: September 2, 2021
    Inventors: Alexander GRANT, Chris CHAFE, Josef PARVIZI, Jianchun YI, Raymond WOO, Xingjuan CHAO
  • Publication number: 20210251807
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye, A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Patent number: 11026841
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: June 8, 2021
    Assignee: AMO Development, LLC
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Publication number: 20210128044
    Abstract: An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 6, 2021
    Inventors: Josef Parvizi, Xingjuan Chao, Bradley G. Bachelder, Raymond Woo, Mathew A. Herron, Vahid Saadat, Alexander M. Grant, Jianchun Yi
  • Patent number: 10980480
    Abstract: Systems, devices, and methods are provided to assess connection quality between the electrodes of a bioelectrical signal measurement and/or electrical stimulation device and the tissue, typically skin, of the subject. A test signal is provided to a first electrode, voltage differences between the first electrode and additional electrodes are determined, an impedance of the first electrode is determined based on the voltages differences, and the determined impedance indicates connection quality. This process is typically repeated for all of the electrodes to determine connection quality. The user or subject can be alerted if the connection quality is poor, and the bioelectrical signal that is recorded can be provided with data points indicating connection quality during the signal recording.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: April 20, 2021
    Assignee: CeriBell, Inc.
    Inventors: Alexander M. Grant, Jianchun Yi, Bradley G. Bachelder, Raymond Woo, Josef Parvizi, Xingjuan Chao