Patents by Inventor Raymond Zanoni

Raymond Zanoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8244139
    Abstract: The present invention is a fiber optic data network, such as a passive optical network (PON), which includes a primary sub-network and a secondary sub-network. The primary sub-network may include a primary optical line terminal communicatively coupled to a plurality of primary optical network units. The secondary sub-network may include a secondary optical line terminal communicatively coupled to a plurality of secondary optical network units and to an intermediate optical network unit. The secondary sub-network may be communicatively coupled to the primary sub-network via the intermediate optical network unit, thereby allowing the PON to be configured so that the primary optical line terminal and the secondary optical line terminal are cascaded.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 14, 2012
    Assignee: Rockwell Collins, Inc.
    Inventors: Peter J. Morgan, Raymond Zanoni, Daniel E. Mazuk, Alistair J. Price
  • Publication number: 20110129230
    Abstract: Apparatuses, systems, and methods are disclosed that provide for an agile coherent optical modem that can generate agile RF waveforms and data rates on a generic opto-electronic hardware platform. An “agile coherent optical modem” [ACOM] approach to optical communications by employing a software configurable and adaptive technologies to the transport system. The ACOM generate agile RF waveforms and data rates on a generic opto-electronic hardware platform. By employing advanced communication techniques to the optical domain such as wavelength agility, waveform agility, and symbol rate agility, it is possible to enable robust optical communications. The ACOM allows for the transport capacity of a communications link to be varied, thereby accommodating variations in transport conditions, range, opacity, etc.
    Type: Application
    Filed: November 1, 2010
    Publication date: June 2, 2011
    Inventors: Raymond Zanoni, David J. Copeland, Alistair J. Price
  • Patent number: 7876246
    Abstract: A monitoring device in an analog-to-digital converter, the monitoring device including a monitoring module configured to receive a first radio frequency signal provided by a first radio frequency modulator and a second radio frequency signal provided by a second radio frequency modulator. The first radio frequency signal being associated with a laser data and a radio frequency input signal. The laser data being associated with a radio frequency oscillator signal. The second radio frequency signal being associated with the laser signal and the radio frequency oscillator signal. The monitoring module is configured to determine a modification factor based on the first radio frequency signal and the second radio frequency signal.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: January 25, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Alistair J. Price, Raymond Zanoni, Peter J. Morgan
  • Patent number: 7868799
    Abstract: The present invention is a remote input analog-to-digital conversion (ADC) system. The system may generate low jitter, short duration optical pulses to allow for high performance sampling of an antenna signal at a remote end of the system. The system may utilize phase modulation and IQ demodulation (with a reference optical pulse stream) using separate analog-to-digital converters for I and Q to overcome linearity limitations. Low sampling rate analog-to-digital converters may be utilized by the system by using parallel, low optical pulse repetition rate paths and/or optical demultiplexer switching trees. The system is an optical fiber system.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: January 11, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Alistair J. Price, Raymond Zanoni
  • Patent number: 7826752
    Abstract: Apparatuses, systems, and methods are disclosed that provide for an agile coherent optical modem that can generate agile RF waveforms and data rates on a generic opto-electronic hardware platform. An “agile coherent optical modem” [ACOM] approach to optical communications by employing a software configurable and adaptive technologies to the transport system. The ACOM generate agile RF waveforms and data rates on a generic opto-electronic hardware platform. By employing advanced communication techniques to the optical domain such as wavelength agility, waveform agility, and symbol rate agility, it is possible to enable robust optical communications. The ACOM allows for the transport capacity of a communications link to be varied, thereby accommodating variations in transport conditions, range, opacity, etc.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: November 2, 2010
    Assignee: Level 3 Communications, LLC
    Inventors: Raymond Zanoni, David J. Copeland, Alistair J. Price
  • Patent number: 7085042
    Abstract: Optical transmission systems of the present invention include at least one optical amplifier configured to provide optical amplification of one or more information carrying optical signal wavelengths. At least one optical amplifier is controlled based on an in situ performance characterization of the at least one optical amplifier and the transmission fiber. The in situ, or installed, performance characteristics of the optical amplifier can be characterized based on relative gain measurements over the signal wavelength range as a function of the supplied pump power. The installed characterization allows the optical amplifier performance and gain profiles to be tightly controlled over the signal wavelength range in the transmission system.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: August 1, 2006
    Assignee: Corvis Corporation
    Inventors: Thomas D. Stephens, Raymond Zanoni
  • Patent number: 7046430
    Abstract: Optical systems of the present invention include a plurality of optical processing nodes in optical communication via a plurality of signal varying devices. A first signal varying device includes an optical fiber configured to produce Raman scattering/gain in a signal wavelength range and a first signal variation profile. A first pump source is configured provides sufficient pump power in a plurality of first pump wavelengths to stimulate Raman scattering/gain in the optical fiber within the signal wavelength range. A second signal varying device is provided having a second signal variation profile to produce a cumulative signal variation profile that differs from the first and second signal variation profiles.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: May 16, 2006
    Assignee: Corvis Corporation
    Inventors: Stephen G. Grubb, Raymond Zanoni, Thomas D. Stephens
  • Patent number: 6992815
    Abstract: Optical transmission systems of the present invention include at least one optical amplifier configured to provide optical amplification of one or more information carrying optical signal wavelengths. At least one optical amplifier is controlled based on an in situ performance characterization of the at least one optical amplifier and the transmission fiber. The in situ, or installed, performance characteristics of the optical amplifier can be characterized based on relative gain measurements over the signal wavelength range as a function of the supplied pump power. The installed characterization allows the optical amplifier performance and gain profiles to be tightly controlled over the signal wavelength range in the transmission system.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: January 31, 2006
    Assignee: Corvis Corporation
    Inventors: Thomas D. Stephens, Raymond Zanoni
  • Patent number: 6967769
    Abstract: Optical systems of the present invention generally include at least one optical amplifier having a first pump source configured to supply power to said amplifier via a first pumping paths. A second pumping path is provided to supply power to the amplifier from a second pump source configured to replace power from the first pump source. The amplifier allows the replacement and repair of a pump source during operation by providing in-service hot swap capability, which increases the overall availability of the amplifier. The pump source can also be changed during operation to allow reconfiguration of the optical system.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: November 22, 2005
    Assignee: Corvis Corporation
    Inventors: Nabil M. Badr, Raymond Zanoni
  • Publication number: 20050213985
    Abstract: Optical transmission systems of the present invention include at least one optical amplifier configured to provide optical amplification of one or more information carrying optical signal wavelengths. At least one optical amplifier is controlled based on an in situ performance characterization of the at least one optical amplifier and the transmission fiber. The in situ, or installed, performance characteristics of the optical amplifier can be characterized based on relative gain measurements over the signal wavelength range as a function of the supplied pump power. The installed characterization allows the optical amplifier performance and gain profiles to be tightly controlled over the signal wavelength range in the transmission system.
    Type: Application
    Filed: May 16, 2005
    Publication date: September 29, 2005
    Applicant: Corvis Corporation
    Inventors: Thomas Stephens, Raymond Zanoni
  • Publication number: 20050052730
    Abstract: Optical systems of the present invention generally include at least one optical amplifier having a first pump source configured to supply power to said amplifier via a first pumping paths. A second pumping path is provided to supply power to the amplifier from a second pump source configured to replace power from the first pump source. The amplifier allows the replacement and repair of a pump source during operation by providing in-service hot swap capability, which increases the overall availability of the amplifier. The pump source can also be changed during operation to allow reconfiguration of the optical system.
    Type: Application
    Filed: September 8, 2004
    Publication date: March 10, 2005
    Inventors: Nabil Badr, Raymond Zanoni
  • Publication number: 20050046929
    Abstract: Optical systems of the present invention include a plurality of optical processing nodes in optical communication via a plurality of signal varying devices. A first signal varying device includes an optical fiber configured to produce Raman scattering/gain in a signal wavelength range and a first signal variation profile. A first pump source is configured provides sufficient pump power in a plurality of first pump wavelengths to stimulate Raman scattering/gain in the optical fiber within the signal wavelength range.
    Type: Application
    Filed: August 9, 2004
    Publication date: March 3, 2005
    Applicant: Corvis Corporation
    Inventors: Stephen Grubb, Raymond Zanoni, Thomas Stephens
  • Patent number: 6839522
    Abstract: Optical systems, device, and methods including signal varying devices, such as optical amplifiers, attenuators, and filters that have controllable gain, loss and transparent intensity profiles, and which can include and be responsive to one or more local and remote controllers.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: January 4, 2005
    Assignee: Corvis Corporation
    Inventors: Stephen G. Grubb, Raymond Zanoni, Thomas D. Stephens
  • Patent number: 6809858
    Abstract: Optical systems of the present invention generally include at least one optical amplifier having a first pump source configured to supply power to said amplifier via a first pumping paths. A second pumping path is provided to supply power to the amplifier from a second pump source configured to replace power from the first pump source. The amplifier allows the replacement and repair of a pump source during operation by providing in-service hot swap capability, which increases the overall availability of the amplifier. The pump source can also be changed during operation to allow reconfiguration of the optical system.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: October 26, 2004
    Assignee: Corvis Corporation
    Inventors: Nabil M. Badr, Raymond Zanoni
  • Patent number: 6775056
    Abstract: Optical systems of the present invention include a plurality of optical processing nodes in optical communication via a plurality of signal varying devices. A first signal varying device includes an optical fiber configured to produce Raman scattering/gain in a signal wavelength range and a first signal variation profile. A first pump source is configured provides sufficient pump power in a plurality of first pump wavelengths to stimulate Raman scattering/gain in the optical fiber within the signal wavelength range. A second signal varying device is provided having a second signal variation profile to produce a cumulative signal variation profile that differs from the first and second signal variation profiles.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: August 10, 2004
    Assignee: Corvis Corporation
    Inventors: Stephen G. Grubb, Raymond Zanoni, Thomas D. Stephens
  • Publication number: 20030185503
    Abstract: Optical systems of the present invention generally include at least one optical amplifier having a first pump source configured to supply power to said amplifier via a first pumping paths. A second pumping path is provided to supply power to the amplifier from a second pump source configured to replace power from the first pump source. The amplifier allows the replacement and repair of a pump source during operation by providing in-service hot swap capability, which increases the overall availability of the amplifier. The pump source can also be changed during operation to allow reconfiguration of the optical system.
    Type: Application
    Filed: March 25, 2003
    Publication date: October 2, 2003
    Applicant: Corvis Corporation
    Inventors: Nabil M. Badr, Raymond Zanoni
  • Publication number: 20030165006
    Abstract: Optical transmission systems of the present invention include at least one optical amplifier configured to provide optical amplification of one or more information carrying optical signal wavelengths. At least one optical amplifier is controlled based on an in situ performance characterization of the at least one optical amplifier and the transmission fiber. The in situ, or installed, performance characteristics of the optical amplifier can be characterized based on relative gain measurements over the signal wavelength range as a function of the supplied pump power. The installed characterization allows the optical amplifier performance and gain profiles to be tightly controlled over the signal wavelength range in the transmission system.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 4, 2003
    Applicant: Corvis Corporation
    Inventors: Thomas D. Stephens, Raymond Zanoni, Daniel J. Kearney, Robert Makowicki
  • Patent number: 6587261
    Abstract: Optical transmission systems of the present invention include at least one optical amplifier configured to provide optical amplification of one or more information carrying optical signal wavelengths. At least one optical amplifier is controlled based on an in situ performance characterization of the at least one optical amplifier and the transmission fiber. The in situ, or installed, performance characteristics of the optical amplifier can be characterized based on relative gain measurements over the signal wavelength range as a function of the supplied pump power. The installed characterization allows the optical amplifier performance and gain profiles to be tightly controlled over the signal wavelength range in the transmission system.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: July 1, 2003
    Assignee: Corvis Corporation
    Inventors: Thomas D. Stephens, Raymond Zanoni
  • Patent number: 6567207
    Abstract: Optical systems of the present invention generally include at least one optical amplifier having a first pump source configured to supply power to said amplifier via a first pumping paths. A second pumping path is provided to supply power to the amplifier from a second pump source configured to replace power from the first pump source. The amplifier allows the replacement and repair of a pump source during operation by providing in-service hot swap capability, which increases the overall availability of the amplifier. The pump source can also be changed during operation to allow reconfiguration of the optical system.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: May 20, 2003
    Assignee: Corvis Corporation
    Inventors: Nabil M. Badr, Raymond Zanoni
  • Publication number: 20020109906
    Abstract: Optical systems of the present invention include a plurality of optical processing nodes in optical communication via a plurality of signal varying devices. A first signal varying device includes an optical fiber configured to produce Raman scattering/gain in a signal wavelength range and a first signal variation profile. A first pump source is configured provides sufficient pump power in a plurality of first pump wavelengths to stimulate Raman scattering/gain in the optical fiber within the signal wavelength range.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 15, 2002
    Applicant: Corvis Corporation
    Inventors: Stephen G. Grubb, Raymond Zanoni, Thomas D. Stephens