Patents by Inventor Raynald Guay

Raynald Guay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220396858
    Abstract: There is provided an extruded and brazed product with improved corrosion resistance by having low coarse recrystallized grain formation as well as a method for making same. The extruded and brazed product comprises an aluminum alloy comprising in weight percent Mn 0.6-0.75; Fe 0.11-0.16; Si 0.10-0.19; Cu<0.01; Zn<0.05; Ti<0.05; optionally a grain refiner; optionally Ni<0.01; and the balance being aluminum and inevitable impurities.
    Type: Application
    Filed: October 14, 2020
    Publication date: December 15, 2022
    Inventors: Nicholas Charles Parson, Raynald Guay
  • Patent number: 11255002
    Abstract: An aluminum alloy for making an extruded and brazed aluminum product, the aluminum alloy comprising, in weight percent, 0.10-0.20 Zn to improve corrosion resistance, 0.9-1.2 Mn, 0.03-0.10 Mg, the sum of Mg and Mn being at least 0.99 to maintain or improve strength, 0.15 to 0.30 Fe to control grain size, up to 0.15 Si, up to 0.03 Cu, up to 0.04 Ti, the balance being aluminum and unavoidable impurities. The alloy may be in the form of extrusion ingots or extruded and brazed aluminum products. A process for making an extruded and brazed aluminum product from the alloy involves homogenizing, extruding, optionally working, and brazing the alloy to form the product.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 22, 2022
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Nicholas C. Parson, Raynald Guay
  • Patent number: 10669616
    Abstract: An aluminum alloy composition includes, in weight percent: 0.7-1.10 manganese; 0.05-0.25 iron; 0.21-0.30 silicon; 0.005-0.020 nickel; 0.10-0.20 titanium; 0.014 max copper; and 0.05 max zinc, with the balance being aluminum and unavoidable impurities. The alloy may tolerate higher nickel contents than existing alloys, while providing increased corrosion resistance, as well as similar extrudability, strength, and performance. Billets of the alloy may be homogenized at 590-640° C. and controlled cooled at less than 250° C. per hour. The homogenized billet may be extruded into a product, such as an aluminum alloy heat exchanger tube.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: June 2, 2020
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Nicholas C. Parson, Raynald Guay, Alexandre Maltais
  • Publication number: 20190127823
    Abstract: An aluminum alloy for making an extruded and brazed aluminum product, the aluminum alloy comprising, in weight percent, 0.10-0.20 Zn to improve corrosion resistance, 0.9-1.2 Mn, 0.03-0.10 Mg, the sum of Mg and Mn being at least 0.99 to maintain or improve strength, 0.15 to 0.30 Fe to control grain size, up to 0.15 Si, up to 0.03 Cu, up to 0.04 Ti, the balance being aluminum and unavoidable impurities. The alloy may be in the form of extrusion ingots or extruded and brazed aluminum products. A process for making an extruded and brazed aluminum product from the alloy involves homogenizing, extruding, optionally working, and brazing the alloy to form the product.
    Type: Application
    Filed: April 10, 2017
    Publication date: May 2, 2019
    Applicant: Rio Tinto Alcan International Limited
    Inventors: Nicholas C. PARSON, Raynald GUAY
  • Patent number: 10000828
    Abstract: An aluminum alloy having an excellent combination of strength, extrudability and corrosion resistance may include in weight percent, about 0.01% or less copper; about 0.15% or less iron; about 0.60 to about 0.90% manganese, where manganese and iron are present in the alloy in a Mn:Fe ratio of at least about 6.6; about 0.02% or less nickel; about 0.08 to about 0.30% silicon; about 0.10 to about 0.20% titanium; and about 0.05 to about 0.20% zinc; the balance being aluminum and unavoidable impurities. Extruded articles and other articles may be formed using the alloy. Methods of forming such articles may include homogenizing a billet of the alloy prior to forming the article.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: June 19, 2018
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Nicholas Charles Parson, Raynald Guay, Alexandre Maltais
  • Patent number: 9970090
    Abstract: An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.05 max Mn, 0.75-0.90 Mg, 0.12-0.18 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: May 15, 2018
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Nick C. Parson, Raynald Guay, Alexandre Maltais
  • Publication number: 20170096731
    Abstract: An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.05 max Mn, 0.75-0.90 Mg, 0.12-0.18 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Inventors: Nick C. Parson, Raynald Guay, Alexandre Maltais
  • Publication number: 20170002448
    Abstract: An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.02-0.08 Mn, 0.75-0.90 Mg, 0.04-0.08 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The minimum Mn content may be 0.03 wt. %, and/or the maximum Mn content may be 0.06 wt. %, in various configurations. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.
    Type: Application
    Filed: November 26, 2014
    Publication date: January 5, 2017
    Inventors: Nicholas C. Parson, Raynald Guay, Francis Breton
  • Publication number: 20160153073
    Abstract: An aluminum alloy having an excellent combination of strength, extrudability and corrosion resistance may include in weight percent, about 0.01% or less copper; about 0.15% or less iron; about 0.60 to about 0.90% manganese, where manganese and iron are present in the alloy in a Mn:Fe ratio of at least about 6.6; about 0.02% or less nickel; about 0.08 to about 0.30% silicon; about 0.10 to about 0.20% titanium; and about 0.05 to about 0.20% zinc; the balance being aluminum and unavoidable impurities. Extruded articles and other articles may be formed using the alloy. Methods of forming such articles may include homogenizing a billet of the alloy prior to forming the article.
    Type: Application
    Filed: April 26, 2013
    Publication date: June 2, 2016
    Inventors: Nicholas Charles PARSON, Raynald GUAY, Alexandre MALTAIS
  • Publication number: 20140083569
    Abstract: An aluminum alloy composition includes, in weight percent: 0.7-1.10 manganese; 0.05-0.25 iron; 0.21-0.30 silicon; 0.005-0.020 nickel; 0.10-0.20 titanium; 0.014 max copper; and 0.05 max zinc, with the balance being aluminum and unavoidable impurities. The alloy may tolerate higher nickel contents than existing alloys, while providing increased corrosion resistance, as well as similar extrudability, strength, and performance. Billets of the alloy may be homogenized at 590-640° C. and controlled cooled at less than 250° C. per hour. The homogenized billet may be extruded into a product, such as an aluminum alloy heat exchanger tube.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Applicant: Rio Tinto Alcan International Limited
    Inventors: Nicholas C. Parson, Raynald Guay, Alexandre Maltais
  • Publication number: 20130319585
    Abstract: An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.05 max Mn, 0.75-0.90 Mg, 0.12-0.18 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventors: Nick C. Parson, Raynald Guay, Alexandre Maltais