Patents by Inventor Rebeca Ramos-Zayas
Rebeca Ramos-Zayas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230293593Abstract: Disclosed herein are cells including neural cells that evade immune recognition such as microglial response and related methods of their use and generation. In some embodiments, the cells disclosed herein have reduced levels or activities of MHC I and/ or MHC II human leukocyte antigens, and in some instances, exogenously express CD47. In some embodiments, the cells are derived from pluripotent stem cells that evade immune recognition by a recipient subject.Type: ApplicationFiled: March 25, 2021Publication date: September 21, 2023Inventors: Sonja SCHREPFER, Rebeca RAMOS-ZAYAS
-
Publication number: 20230250448Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: ApplicationFiled: March 2, 2023Publication date: August 10, 2023Inventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Publication number: 20230193313Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: ApplicationFiled: March 2, 2023Publication date: June 22, 2023Inventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Publication number: 20230070540Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: ApplicationFiled: August 9, 2022Publication date: March 9, 2023Inventors: Alireza REZANIA, Rebeca RAMOS-ZAYAS
-
Publication number: 20230073515Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: ApplicationFiled: August 9, 2022Publication date: March 9, 2023Inventors: Alireza REZANIA, Rebeca RAMOS-ZAYAS
-
Patent number: 11434505Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: GrantFiled: July 23, 2021Date of Patent: September 6, 2022Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11433103Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: GrantFiled: July 23, 2021Date of Patent: September 6, 2022Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Publication number: 20220064667Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: ApplicationFiled: November 19, 2021Publication date: March 3, 2022Inventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Publication number: 20220016177Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: ApplicationFiled: July 23, 2021Publication date: January 20, 2022Inventors: Alireza REZANIA, Rebeca RAMOS-ZAYAS
-
Publication number: 20210363548Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: ApplicationFiled: July 23, 2021Publication date: November 25, 2021Inventors: Alireza REZANIA, Rebeca Ramos-Zayas
-
Patent number: 11180776Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: GrantFiled: April 26, 2021Date of Patent: November 23, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Publication number: 20210348188Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: ApplicationFiled: April 26, 2021Publication date: November 11, 2021Inventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11116797Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: GrantFiled: September 4, 2020Date of Patent: September 14, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11118196Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: GrantFiled: September 4, 2020Date of Patent: September 14, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11116798Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: GrantFiled: September 4, 2020Date of Patent: September 14, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11118195Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: GrantFiled: September 4, 2020Date of Patent: September 14, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11104918Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.Type: GrantFiled: September 4, 2020Date of Patent: August 31, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11008587Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: GrantFiled: July 14, 2020Date of Patent: May 18, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Patent number: 11008586Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: GrantFiled: July 14, 2020Date of Patent: May 18, 2021Assignee: CRISPR THERAPEUTICS AGInventors: Alireza Rezania, Rebeca Ramos-Zayas
-
Publication number: 20210115471Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.Type: ApplicationFiled: July 14, 2020Publication date: April 22, 2021Inventors: Alireza Rezania, Rebeca Ramos-Zayas