Patents by Inventor Rebeca Ramos-Zayas

Rebeca Ramos-Zayas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230293593
    Abstract: Disclosed herein are cells including neural cells that evade immune recognition such as microglial response and related methods of their use and generation. In some embodiments, the cells disclosed herein have reduced levels or activities of MHC I and/ or MHC II human leukocyte antigens, and in some instances, exogenously express CD47. In some embodiments, the cells are derived from pluripotent stem cells that evade immune recognition by a recipient subject.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 21, 2023
    Inventors: Sonja SCHREPFER, Rebeca RAMOS-ZAYAS
  • Publication number: 20230250448
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Application
    Filed: March 2, 2023
    Publication date: August 10, 2023
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20230193313
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Application
    Filed: March 2, 2023
    Publication date: June 22, 2023
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20230070540
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Application
    Filed: August 9, 2022
    Publication date: March 9, 2023
    Inventors: Alireza REZANIA, Rebeca RAMOS-ZAYAS
  • Publication number: 20230073515
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Application
    Filed: August 9, 2022
    Publication date: March 9, 2023
    Inventors: Alireza REZANIA, Rebeca RAMOS-ZAYAS
  • Patent number: 11433103
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: September 6, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11434505
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: September 6, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20220064667
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Application
    Filed: November 19, 2021
    Publication date: March 3, 2022
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20220016177
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 20, 2022
    Inventors: Alireza REZANIA, Rebeca RAMOS-ZAYAS
  • Publication number: 20210363548
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 25, 2021
    Inventors: Alireza REZANIA, Rebeca Ramos-Zayas
  • Patent number: 11180776
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: November 23, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20210348188
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Application
    Filed: April 26, 2021
    Publication date: November 11, 2021
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11116797
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11116798
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11118195
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11118196
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11104918
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: August 31, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11008587
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 18, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11008586
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 18, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20210115471
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Application
    Filed: July 14, 2020
    Publication date: April 22, 2021
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas