Patents by Inventor Rebecca Buxbaum

Rebecca Buxbaum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11547973
    Abstract: Polytetrafluoroethylene (PTFE) composite articles that have a macro textured surface. The composite articles include at least two different PTFE membranes in a layered or stacked configuration. The composite article has a macro textured surface characterized by a plurality of strands raised from the surface of the PTFE membrane. The strands may be formed of either interconnected nodes of PTFE or of at least one nodal mass of PTFE and have a length equal to or greater than about 1.5 mm. The macro textured surface provides a topography to the first PTFE membrane. The composite articles have a bubble point from about 3.0 psi to about 200 psi, a thickness from about 0.01 to about 3.0 mm, and a bulk density from about 0.01 g/cm3 to about 1.0 g/cm3.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: January 10, 2023
    Inventors: Donald L. Hollenbaugh, Jr., Bernadette Parsons, Gopalan V. Balaji, Rebecca Buxbaum
  • Publication number: 20210205764
    Abstract: Polytetrafluoroethylene (PTFE) composite articles that have a macro textured surface. The composite articles include at least two different PTFE membranes in a layered or stacked configuration. The composite article has a macro textured surface characterized by a plurality of strands raised from the surface of the PTFE membrane. The strands may be formed of either interconnected nodes of PTFE or of at least one nodal mass of PTFE and have a length equal to or greater than about 1.5 mm. The macro textured surface provides a topography to the first PTFE membrane. The composite articles have a bubble point from about 3.0 psi to about 200 psi, a thickness from about 0.01 to about 3.0 mm, and a bulk density from about 0.01 g/cm3 to about 1.0 g/cm3.
    Type: Application
    Filed: March 24, 2021
    Publication date: July 8, 2021
    Inventors: Donald L. Hollenbaugh, JR., Bernadette Parsons (fka Heller), Gopalan V. Balaji, Rebecca Buxbaum
  • Patent number: 10987638
    Abstract: Polytetrafluoroethylene (PTFE) composite articles that have a macro textured surface. The composite articles include at least two different PTFE membranes in a layered or stacked configuration. The composite article has a macro textured surface characterized by a plurality of strands raised from the surface of the PTFE membrane. The strands may be formed of either interconnected nodes of PTFE or of at least one nodal mass of PTFE and have a length equal to or greater than about 1.5 mm. The macro textured surface provides a topography to the first PTFE membrane. The composite articles have a bubble point from about 3.0 psi to about 200 psi, a thickness from about 0.01 to about 3.0 mm, and a bulk density from about 0.01 g/cm3 to about 1.0 g/cm3.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 27, 2021
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates GmbH
    Inventors: Donald L. Hollenbaugh, Jr., Bernadette Heller, Gopalan V. Balaji, Rebecca Buxbaum
  • Publication number: 20160367947
    Abstract: Polytetrafluoroethylene (PTFE) composite articles that have a macro textured surface. The composite articles include at least two different PTFE membranes in a layered or stacked configuration. The composite article has a macro textured surface characterized by a plurality of strands raised from the surface of the PTFE membrane. The strands may be formed of either interconnected nodes of PTFE or of at least one nodal mass of PTFE and have a length equal to or greater than about 1.5 mm. The macro textured surface provides a topography to the first PTFE membrane. The composite articles have a bubble point from about 3.0 psi to about 200 psi, a thickness from about 0.01 to about 3.0 mm, and a bulk density from about 0.01 g/cm3 to about 1.0 g/cm3.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 22, 2016
    Inventors: Donald L. Hollenbaugh, JR., Bernadette Heller, Gopalan V. Balaji, Rebecca Buxbaum