Patents by Inventor Rebecca K. Gottlieb

Rebecca K. Gottlieb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957459
    Abstract: Subject matter disclosed herein relates to monitoring and/or controlling blood glucose levels in patients. In particular, times for obtaining metered blood glucose samples of a patient may be altered based, at least in part, on a blood glucose level of said patient observed from a blood glucose sensor.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: April 16, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rebecca K. Gottlieb, Meena Ramachandran
  • Patent number: 11872372
    Abstract: A processor-implemented method includes obtaining measurement data indicative of a physiological condition measured by a sensing arrangement located at a site on a body, determining a lag associated with the sensing arrangement based on a relationship between the measurement data and reference data, and identifying, based on the lag, the site at which the sensing arrangement is located from a plurality of sites on the body.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 16, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Neha J. Parikh, Rebecca K. Gottlieb, Benyamin Grosman, Anirban Roy, Di Wu
  • Publication number: 20230414866
    Abstract: A medical device includes a base having a first surface to be secured to a patient's skin. A first insertable member has a length portion extending from the first surface of the base for insertion. A second insertable member has a length portion extending from the first surface of the base for insertion through the patient's skin. The first insertable member includes a sensor member for sensing a biological condition, and the second insertable member includes an infusion cannula for infusing an infusion media. The distal end of the first insertable member and the distal end of the second insertable member are spaced apart by a first distance of at least 5.0 mm, for reducing interference of the infusion media from the infusion cannula with an operation of the sensor member.
    Type: Application
    Filed: April 19, 2023
    Publication date: December 28, 2023
    Inventors: Chia-Hung Chiu, Elizabeth Zanabria, Rebecca K. Gottlieb, Biswa Prakash Das, Ellis Garai, Kevin Michael Kelleher, Hsifu Wang, Ravi Namani
  • Publication number: 20230355141
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, the system may include a device (e.g., an implantable pulse generator) and an electrode device electrically coupled to the device. In some examples, the device may be configured to generate a current that is to be applied to the anatomical element via the electrode device to stimulate the anatomical element as part of a therapy aimed at achieving or supporting glycemic control in the patient. Additionally, the current may be applied to the anatomical element based on a machine learning algorithm that uses inputs gathered for determining one or more characteristics for the current. Accordingly, the machine learning algorithm may be configured to determine the one or more characteristics for the current specific to the patient (e.g., to provide personalized therapy settings for the patient).
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355969
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, a device may be configured to generate a current, and an electrode device coupled to the device may be configured to apply the current to the anatomical element. Additionally, the system may include a user interface in communication with the implantable pulse generator, the electrode device, or both. In some examples, the user interface may include a first element that is configured to display information associated with the patient. Additionally, the user interface may include a second element that is configured to receive inputs for programming parameters of the current. The user interface may also include a third element that is configured to display diagnostic information associated with applying the current to the anatomical element.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355976
    Abstract: A system is provided herein for stimulating an anatomical element of a patient to regulate insulin production of the patient. In some examples, the system may include a device configured to generate a current and an electrode device electrically coupled to the device. Subsequently, the device may receive instructions to apply the current to the anatomical element via a plurality of electrodes of the electrode device, where the current is configured to regulate insulin production of the patient. For example, a first electrode may be configured for placement on or around a celiac vagal trunk, where the current downregulates neural activity of the celiac vagal trunk, and a second electrode may be configured for placement on or around a hepatic vagal trunk, where the current upregulates neural activity of the hepatic vagal trunk.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355975
    Abstract: A system is provided herein for stimulating an anatomical element of a patient to achieve glycemic control for the patient. In some examples, the system may include a device configured to generate a current and an electrode device electrically coupled to the device that includes a plurality of electrodes configured for placement on or around the anatomical element. The device may receive instructions to apply the current to the anatomical element via the plurality of electrodes of the electrode device. Additionally, the current may be applied using a first waveform of a plurality of waveforms that the device is capable of generating, where each of the plurality of waveforms comprise a substantially similar charge density. Additionally or alternatively, a system is provided that provides a pharmacological blockade at the anatomical element using a micropump that is configured to deliver a pharmacological agent to the anatomical element to achieve glycemic control.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355981
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, a device may be configured to generate a current, and an electrode device coupled to the device may be configured to apply the current to the anatomical element. In some examples, the current may be configured to prevent hypoglycemic episodes from occurring in the patient when applied to the anatomical element. For example, the current may be configured to downregulate neural activity of a celiac vagal trunk and to upregulate neural activity of a hepatic vagal trunk. Accordingly, the current being applied to anatomical element of the patient may result in a decrease in insulin production of the patient, an increase in glucose production of the patient, an increase in blood sugar levels of the patient, or a combination thereof. Additionally, applying the current may prevent nocturnal hypoglycemic episodes from occurring.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, Shaileshkumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355980
    Abstract: Systems and methods for wirelessly providing therapy to one or more anatomical elements may comprise a first capsule and a second capsule. The first capsule may be configured to wirelessly transmit instructions to a second capsule and the second capsule may be configured to receive the wirelessly transmitted instructions. The first capsule may receive an activation signal and apply a first current to a first anatomical element. The first capsule may also wirelessly transmit a first set of instructions to the second capsule to cause the second capsule to apply a second current to a second anatomical element.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355244
    Abstract: Systems and methods for mechanically blocking a nerve are provided. The system may comprise a blocking device configured to selectively compress the nerve. The system may also comprise a feedback mechanism configured to measure a response correlating to whether the nerve is blocked. When the blocking device compresses the nerve, a response from the feedback mechanism is received that correlates to the nerve being blocked or unblocked after a period of time.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355965
    Abstract: System and methods for stimulating or blocking a nerve are provided. The system may include an implantable pulse generator configured to generate a current and an electrode device in communication with the implantable pulse generator and configured to surround the nerve. The electrode device may include a housing comprising an inner surface, a first edge, and a second edge opposite the first edge; at least one electrode disposed on the inner surface and configured to apply the current to the nerve; and at least one closure configured to couple the first edge to the second edge to form a seal.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355977
    Abstract: A system is described that includes: a first sensor that measures a glycemic level of a patient; a second sensor that measures at least one of a protein level of the patient, a hormone level of the patient, and an activity level of the patient; a processor that receives inputs from the first sensor and inputs from the second sensor; and memory including data that, when executed by the processor, enables the processor to perform one or more functions. An example of such function(s) include: analyzing the inputs received from the first sensor and the second sensor; determining, based on the analysis, that an electrical treatment is to be applied to the patient, where the electrical treatment includes application of at least one electrical signal to a nervous system of the patient; and causing the electrical treatment to be applied to the nervous system of the patient.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355982
    Abstract: A system is provided herein for stimulating an anatomical element of a patient. For example, the system may include a device configured to generate a current (e.g., implantable pulse generator), a first electrode device configured to apply the current to the anatomical element, and a second electrode device configured to record one or more response measurements associated with applying the current to the anatomical element. In some examples, the one or more response measurements may be used to generate growth curves associated with applying the current to the anatomical element, where the growth curves can be used to adjust one or more parameters of the current. Additionally, the one or more response measurements may include an evoked compound action potential (eCAP) measurement, an electromyography (EMG) measurement, a glucose level measurement, or a combination thereof.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Publication number: 20230355987
    Abstract: Systems and methods for stimulating an anatomical element are provided. The system may comprise an implantable pulse generator configured to generate a current and an electrode device comprising a plurality of electrodes configured to apply the current to the anatomical element. Each of the plurality of electrodes may comprise at least one of an anode or a cathode. The electrode device may be customized by assigning each of the plurality of electrodes as at least one of an anode or a cathode and at least one of active or inactive. The current may be applied to the anatomical element in a predetermined pattern using the plurality of electrodes.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Maneesh Shrivastav, ShaileshKumar V. Musley, Kanthaiah Koka, Steven M. Goetz, Suryakiran Vadrevu, Rebecca K. Gottlieb, David John Miller, Leonid M. Litvak
  • Patent number: 11793930
    Abstract: A fluid infusion system includes a housing configured to be adhesively coupled to an anatomy of a user, and a tube configured to extend from the housing for insertion into the anatomy of the user. The tube includes a plurality of conduits defined within the tube. The plurality of conduits include a fluid delivery conduit configured to facilitate a fluidic connection between a fluid source and the anatomy of the user, and one or more conduits configured to accommodate a plurality of electrodes for determining a physiological characteristic of the user.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: October 24, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Chia-Hung Chiu, Rebecca K. Gottlieb, Ellis Garai, Akhil Srinivasan, Andrea Varsavsky, Adam S. Trock, Ashwin K. Rao, Hsifu Wang, Daniel E. Pesantez, Isabella Ella Miya, Xinrui Zhang, Guruguhan Meenakshisundaram
  • Publication number: 20230248904
    Abstract: An insertion set system includes a base configured to be secured to a patient, and a flexible tubing on the base. The flexible tubing has a distal end portion forming a cannula to be inserted into the patient. An inserter having a needle is received by the base. The needle has a channel in which the distal end portion of the flexible tubing is received. The needle is able to slide relative to the flexible tubing, to selectively withdraw the needle off of the distal end portion of the flexible tubing. The base may include a passage for fluid flow arranged transverse to the axial dimension of the distal end portion of the flexible tubing.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Inventors: Chia-Hung Chiu, Hsifu Wang, Rebecca K. Gottlieb
  • Patent number: 11701034
    Abstract: An introducer is provided for introducing a sensor into the body of a patient. The introducer connects to a sensor hub. When the sensor hub and introducer are connected, the introducer needle is exposed. When the sensor hub and introducer are disconnected, a needle cover and the needle move with respect to each other so that the needle cover substantially covers the needle, protecting a user from being injured by the needle.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: July 18, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rebecca K. Gottlieb, Rajiv Shah, Katherine T. Wolfe, Eric Allan Larson
  • Publication number: 20230191020
    Abstract: Disclosed is a medical device component for delivering medication fluid to a patient. The medical device component includes a fluid infusion device to regulate delivery of medication fluid, a body-mountable base unit, and a top cover assembly that is removably couplable to the base unit and to the fluid infusion device. The base unit includes a cannula to deliver medication fluid under the control of the fluid infusion device, and a physiological analyte sensor to measure a physiological characteristic. The base unit also includes an electronics assembly electrically connected to sensor leads to obtain measurements in the analog domain, to convert measurements into digital sensor data, and to communicate conditioned digital sensor data to the fluid infusion device. The top cover assembly is configured to provide both fluid and electrical connections for the base unit, by way of an infusion tube having sensor conductors integrated therein or otherwise associated therewith.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Inventors: Chia-Hung Chiu, Peter Schultz, Gayane R. Voskanyan, Hsifu Wang, Rebecca K. Gottlieb, Kenneth D. Warnock, Ricardo Juarez Martinez
  • Patent number: 11654233
    Abstract: An insertion set system includes a base configured to be secured to a patient, and a flexible tubing on the base. The flexible tubing has a distal end portion forming a cannula to be inserted into the patient. An inserter having a needle is received by the base. The needle has a channel in which the distal end portion of the flexible tubing is received. The needle is able to slide relative to the flexible tubing, to selectively withdraw the needle off of the distal end portion of the flexible tubing. The base may include a passage for fluid flow arranged transverse to the axial dimension of the distal end portion of the flexible tubing.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: May 23, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Chia-Hung Chiu, Hsifu Wang, Rebecca K. Gottlieb
  • Patent number: 11642454
    Abstract: A fluid infusion system includes a housing configured to be adhesively coupled to an anatomy of the user. The housing comprises a communication device configured to wirelessly communicate a physiological characteristic to a communication component of a fluid infusion device. The fluid infusion system includes a fluid flow path from the fluid infusion device into the anatomy of the user, and the fluid flow path is configured to extend from the housing for insertion into the anatomy of the user.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: May 9, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Chia-Hung Chiu, Rebecca K. Gottlieb, Ellis Garai, Akhil Srinivasan, Andrea Varsavsky, Adam S. Trock, Ashwin K. Rao, Hsifu Wang, Daniel E. Pesantez, Isabella Ella Miya, Xinrui Zhang, Guruguhan Meenakshisundaram