Patents by Inventor Rebecca S. Bryant

Rebecca S. Bryant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9477042
    Abstract: Techniques and systems suitable for performing low-loss fusion splicing of optical waveguide sections are provided. According to some embodiments, multiple laser beams (from one or more laser) may be utilized to uniformly heat a splice region including portions of the optical waveguide sections to be spliced, which may have different cross-sectional dimensions. According to some embodiments, the relative distance of the optical waveguide sections and/or the power of the multiple laser beams may be varied during splicing operations.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: October 25, 2016
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Mark R. Fernald, Trevor W. MacDougall, Martin A. Putnam, Rebecca S. Bryant, Christopher J. Wright, Michael Arcand, Christopher T. Chipman
  • Publication number: 20120073329
    Abstract: Techniques and systems suitable for performing low-loss fusion splicing of optical waveguide sections are provided. According to some embodiments, multiple laser beams (from one or more laser) may be utilized to uniformly heat a splice region including portions of the optical waveguide sections to be spliced, which may have different cross-sectional dimensions. According to some embodiments, the relative distance of the optical waveguide sections and/or the power of the multiple laser beams may be varied during splicing operations.
    Type: Application
    Filed: December 6, 2011
    Publication date: March 29, 2012
    Inventors: MARK R. FERNALD, Trevor W. MacDougall, Martin A. Putnam, Rebecca S. Bryant, Christopher J. Wright, Michael Arcand, Christopher T. Chipman
  • Patent number: 8070369
    Abstract: Techniques and systems suitable for performing low-loss fusion splicing of optical waveguide sections are provided. According to some embodiments, multiple laser beams (from one or more laser) may be utilized to uniformly heat a splice region including portions of the optical waveguide sections to be spliced, which may have different cross-sectional dimensions. According to some embodiments, the relative distance of the optical waveguide sections and/or the power of the multiple laser beams may be varied during splicing operations.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: December 6, 2011
    Assignee: Weatherford/LAMB, Inc.
    Inventors: Mark R. Fernald, Trevor W. MacDougall, Martin A. Putnam, Rebecca S. Bryant, Christopher J. Wright, Michael Arcand, Christopher T. Chipman
  • Patent number: 6959604
    Abstract: A fiber optic pressure sensor for measuring unsteady pressures within a pipe include at least one optical fiber disposed circumferentially around a portion of a circumference of the pipe, which provides an optical signal indicative of the length of the optical fiber. An optical instrument measures the change in length of the optical fiber to determine the unsteady pressure within the pipe. The pressure sensor may include a plurality of optical fiber sections disposed circumferentially around a portion of the circumference of the pipe that are optically connected together by optical fiber sections disposed axially along the pipe. The optical fiber sections may include fiber Bragg gratings having substantially the same or different reflection wavelengths to permit for example the sensors to be axially distributed along the fiber using wavelength division multiplexing and/or time division multiplexing.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: November 1, 2005
    Assignee: CiDRA Corporation
    Inventors: Rebecca S. Bryant, Daniel L. Gysling, Charles R. Winston, Allen R. Davis, John M. Faustino
  • Publication number: 20040165834
    Abstract: Low-loss large diameter optical waveguide attachment devices (i.e., pigtails) and methods and systems of making the same are provided. The optical waveguide attachment devices may include an optical fiber (or other type waveguide) embedded in a larger diameter carrier tube. According to some embodiments, multiple laser beams (from one or more laser) may be utilized to uniformly heat the circumference of the carrier tube. According to some embodiments a maria may be formed in one end of the capillary tube to facilitate optical waveguide insertion and/or provide strain relief.
    Type: Application
    Filed: January 12, 2004
    Publication date: August 26, 2004
    Inventors: Rebecca S. Bryant, Christopher J. Wright, Michael Arcand, Christopher T. Chipman
  • Publication number: 20040165841
    Abstract: Techniques and systems suitable for performing low-loss fusion splicing of optical waveguide sections are provided. According to some embodiments, multiple laser beams (from one or more laser) may be utilized to uniformly heat a splice region including portions of the optical waveguide sections to be spliced, which may have different cross-sectional dimensions. According to some embodiments, the relative distance of the optical waveguide sections and/or the power of the multiple laser beams may be varied during splicing operations.
    Type: Application
    Filed: January 12, 2004
    Publication date: August 26, 2004
    Inventors: Mark R. Fernald, Trevor W. MacDougall, Martin A. Putnam, Rebecca S. Bryant, Christopher J. Wright, Michael Arcand, Christopher T. Chipman
  • Patent number: 6691584
    Abstract: According to one embodiment of the present invention, the apparatus comprises a first filter for measuring a pressure field at a first axial location along the pipe and providing a first pressure signal indicative of the vortical pressure field. The apparatus further comprises a second filter for measuring the vortical pressure field at a second axial location along the pipe and providing a second pressure signal indicative of the vortical pressure field. The apparatus further comprises a signal processor, responsive to the first and the second pressure signals, which provides a velocity signal indicative of a velocity of the vortical pressure field moving in the pipe.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: February 17, 2004
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Daniel L. Gysling, Rebecca S. Bryant, Charles R. Winston
  • Publication number: 20030038231
    Abstract: Non-intrusive pressure sensors 14-18 for measuring unsteady pressures within a pipe 12 include an optical fiber 10 wrapped in coils 20-24 around the circumference of the pipe 12. The length or change in length of the coils 20-24 is indicative of the unsteady pressure in the pipe. Bragg gratings 310-324 impressed in the fiber 10 may be used having reflection wavelengths &lgr; that relate to the unsteady pressure in the pipe. One or more of sensors 14-18 may be axially distributed along the fiber 10 using wavelength division multiplexing and/or time division multiplexing.
    Type: Application
    Filed: August 21, 2002
    Publication date: February 27, 2003
    Inventors: Rebecca S. Bryant, Daniel L. Gysling, Charles R. Winston, Allen R. Davis, John M. Faustino
  • Publication number: 20020194932
    Abstract: According to one embodiment of the present invention, the apparatus comprises a first filter for measuring a pressure field at a first axial location along the pipe and providing a first pressure signal indicative of the vortical pressure field. The apparatus further comprises a second filter for measuring the vortical pressure field at a second axial location along the pipe and providing a second pressure signal indicative of the vortical pressure field. The apparatus further comprises a signal processor, responsive to the first and the second pressure signals, which provides a velocity signal indicative of a velocity of the vortical pressure field moving in the pipe.
    Type: Application
    Filed: April 3, 2002
    Publication date: December 26, 2002
    Inventors: Daniel L. Gysling, Rebecca S. Bryant, Charles R. Winston
  • Patent number: 4905761
    Abstract: A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.
    Type: Grant
    Filed: July 29, 1988
    Date of Patent: March 6, 1990
    Assignee: IIT Research Institute
    Inventor: Rebecca S. Bryant