Patents by Inventor Rebecca Tjoelker

Rebecca Tjoelker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10421505
    Abstract: An automotive vehicle according to the present disclosure includes a body having a lower surface with a plurality of vehicle wheels having respective contact surfaces for contacting a driving surface. An underbody space is thereby defined between the contact surfaces and the lower surface of the body. The vehicle additionally includes a movable air deflector coupled to the lower surface and projecting into the underbody space. The air deflector has a first position with a first blockage profile and a second position with a second blockage profile. The vehicle additionally includes an actuator coupled to the air deflector, which is configured to drive the air deflector between the first position and the second position. The vehicle further includes a controller configured to, in response to satisfaction of an operating condition, control the actuator to move the air deflector from the first position to the second position.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: September 24, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rebecca Tjoelker, Timothy D. Demetrio, Caleb Potvin
  • Patent number: 10370042
    Abstract: An adjustable aerodynamic assembly includes a support structure and a blocking member supported by the support structure. The blocking member is movable between an extended position in which the blocking member is disposed transverse to the support structure to interact with an airflow and a retracted position in which the blocking member retracts to minimize interaction with the airflow. The adjustable aerodynamic assembly also includes an actuator coupled to the blocking member and configured to move the blocking member to the extended and retracted positions, and a detection member coupled to the blocking member and configured to determine whether a surface of the blocking member is detected. A method of monitoring the adjustable aerodynamic assembly includes determining whether the surface of the blocking member is detected via the detection member. The method also includes selectively activating the actuator to move the blocking member to the extended and retracted positions.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: August 6, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Samantha J. Bray, Joshua R. Auden, Jason D. Fahland, Timothy D. Demetrio, Caleb Potvin, Rebecca Tjoelker
  • Patent number: 10315711
    Abstract: A system is configured to control aerodynamics of a vehicle. The vehicle includes a vehicle body having a first end facing an ambient airflow when the vehicle is in motion relative to a road surface and a second end arranged opposite the first end. The system includes an air deflector moveably mounted to the vehicle body. The system also includes a mechanism configured to selectively vary a height of the deflector relative to the road surface and a position of the deflector relative to the vehicle body. The system additionally includes a controller configured to determine a ride-height of the vehicle and correlate the determined vehicle ride-height to a target height of the deflector relative to the road surface. The controller is further configured to regulate the mechanism to select the target height of the deflector relative to the road surface to thereby control the aerodynamics of the vehicle.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: June 11, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Timothy D. Demetrio, Caleb Potvin, Rebecca Tjoelker
  • Publication number: 20190039664
    Abstract: An automotive vehicle according to the present disclosure includes a body having a lower surface with a plurality of vehicle wheels having respective contact surfaces for contacting a driving surface. An underbody space is thereby defined between the contact surfaces and the lower surface of the body. The vehicle additionally includes a movable air deflector coupled to the lower surface and projecting into the underbody space. The air deflector has a first position with a first blockage profile and a second position with a second blockage profile. The vehicle additionally includes an actuator coupled to the air deflector, which is configured to drive the air deflector between the first position and the second position. The vehicle further includes a controller configured to, in response to satisfaction of an operating condition, control the actuator to move the air deflector from the first position to the second position.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 7, 2019
    Inventors: Rebecca Tjoelker, Timothy D. Demetrio, Caleb Potvin
  • Publication number: 20190039663
    Abstract: An adjustable aerodynamic assembly includes a support structure and a blocking member supported by the support structure. The blocking member is movable between an extended position in which the blocking member is disposed transverse to the support structure to interact with an airflow and a retracted position in which the blocking member retracts to minimize interaction with the airflow. The adjustable aerodynamic assembly also includes an actuator coupled to the blocking member and configured to move the blocking member to the extended and retracted positions, and a detection member coupled to the blocking member and configured to determine whether a surface of the blocking member is detected. A method of monitoring the adjustable aerodynamic assembly includes determining whether the surface of the blocking member is detected via the detection member. The method also includes selectively activating the actuator to move the blocking member to the extended and retracted positions.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 7, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Samantha J. Bray, Joshua R. Auden, Jason D. Fahland, Timothy D. Demetrio, Caleb Potvin, Rebecca Tjoelker
  • Publication number: 20190031160
    Abstract: An automotive vehicle includes a wheel well having an inboard portion and an outboard portion. The vehicle also includes a duct associated with a duct inlet, a first duct outlet, and a second duct outlet. The duct inlet is configured to receive airflow resulting from vehicle motion. The first duct outlet is disposed at the inboard portion of the wheel well, and the second duct outlet is disposed at the outboard portion of the wheel well. The duct has a branch portion, a first length coupling the duct inlet to the branch portion, a second length coupling the branch portion to the first duct outlet, and a third length coupling the branch portion to the second duct outlet. The vehicle further includes a movable member disposed proximate the branch portion for controlling the fractions of airflow from the first length into the second and third lengths, respectively.
    Type: Application
    Filed: July 26, 2017
    Publication date: January 31, 2019
    Inventors: Ethan A. McMillan, Rebecca Tjoelker
  • Publication number: 20190031252
    Abstract: A system is configured to control aerodynamics of a vehicle. The vehicle includes a vehicle body having a first end facing an ambient airflow when the vehicle is in motion relative to a road surface and a second end arranged opposite the first end. The system includes an air deflector moveably mounted to the vehicle body. The system also includes a mechanism configured to selectively vary a height of the deflector relative to the road surface and a position of the deflector relative to the vehicle body. The system additionally includes a controller configured to determine a ride-height of the vehicle and correlate the determined vehicle ride-height to a target height of the deflector relative to the road surface. The controller is further configured to regulate the mechanism to select the target height of the deflector relative to the road surface to thereby control the aerodynamics of the vehicle.
    Type: Application
    Filed: July 25, 2017
    Publication date: January 31, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Timothy D. Demetrio, Caleb Potvin, Rebecca Tjoelker