Patents by Inventor Reed Corderman

Reed Corderman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8826529
    Abstract: A device includes a substrate (308) and a metallic layer (336) formed over the substrate (308) with a deposition process for which the metallic layer (336) is characterizable as having a pre-determinable as-deposited defect density. As a result of a fabrication process, the defect density of the metallic layer (336) is reduced relative to the pre-determinable as-deposited defect density of the same layer (336) or another layer having like composition and which is formed under like deposition conditions. In a related method, a substrate (308) is provided and a removable layer (330) is formed over the substrate (308). A metallic layer (336) is formed over the removable layer (330) and is patterned and etched to define a structure over the removable layer (330). The removable layer (330) is removed, and the metallic layer (336) is heated for a time beyond that necessary for bonding of a hermetic sealing cap (340) thereover.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Andrew Joseph Detor, Reed Corderman, Christopher Keimel, Marco Aimi
  • Publication number: 20110163397
    Abstract: A device includes a substrate (308) and a metallic layer (336) formed over the substrate (308) with a deposition process for which the metallic layer (336) is characterizable as having a pre-determinable as-deposited defect density. As a result of a fabrication process, the defect density of the metallic layer (336) is reduced relative to the pre-determinable as-deposited defect density of the same layer (336) or another layer having like composition and which is formed under like deposition conditions. In a related method, a substrate (308) is provided and a removable layer (330) is formed over the substrate (308). A metallic layer (336) is formed over the removable layer (330) and is patterned and etched to define a structure over the removable layer (330). The removable layer (330) is removed, and the metallic layer (336) is heated for a time beyond that necessary for bonding of a hermetic sealing cap (340) thereover.
    Type: Application
    Filed: December 21, 2010
    Publication date: July 7, 2011
    Inventors: Andrew Joseph Detor, Reed Corderman, Christopher Keimel, Marco Aimi
  • Publication number: 20070273263
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Application
    Filed: August 8, 2007
    Publication date: November 29, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Heather Hudspeth, Reed Corderman, Renee Rohling, Lauraine Denault
  • Publication number: 20070247048
    Abstract: In a method of making a field emitter, at least one post (120) is formed on a semiconductor substrate (110). The post (120) extends upwardly from the substrate (110). The post (120) is monocrystalline with the substrate (110). A dielectric layer (130) is deposited on the substrate (110). The dielectric layer (130) defines a via (132) therethrough about the post (120). A conductive gate layer (140) is applied to the dielectric layer (130) so that the conductive gate layer (140) defines an opening that is juxtaposed with the via (132). At least one nanostructure (150) is grown upwardly from the top surface of the post (120).
    Type: Application
    Filed: September 23, 2005
    Publication date: October 25, 2007
    Applicant: General Electric Company
    Inventors: Anping Zhang, Joleyn Balch, Loucas Tsakalakos, Heather Hudspeth, Reed Corderman
  • Publication number: 20070085459
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Application
    Filed: July 19, 2005
    Publication date: April 19, 2007
    Inventors: Heather Hudspeth, Reed Corderman, Renee Rohling, Lauraine Denault
  • Publication number: 20070029911
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Application
    Filed: July 19, 2005
    Publication date: February 8, 2007
    Inventors: Heather Hudspeth, Ji Lee, Reed Corderman, Anping Zhang, Renee Rohling, Lauraine Denault, Joleyn Balch
  • Publication number: 20060275955
    Abstract: In some embodiments, the present invention addresses the challenges of fabricating nanorod arrays comprising a heterogeneous composition and/or arrangement of the nanorods. In some embodiments, the present invention is directed to multicomponent nanorod arrays comprising nanorods of at least two different chemical compositions, and to methods of making same. In some or other embodiments, the nanorods are spatially positioned within the array in a pre-defined manner.
    Type: Application
    Filed: June 1, 2005
    Publication date: December 7, 2006
    Inventors: Anthony Ku, Reed Corderman, Krzysztof Slowinski
  • Publication number: 20060274470
    Abstract: A device for controlling the flow of electric current is provided. The device comprises a first conductor; a second conductor switchably coupled to the first conductor to alternate between an electrically connected state with the first conductor and an electrically disconnected state with the first conductor. At least one conductor further comprises an electrical contact, the electrical contact comprising a solid matrix comprising a plurality of pores; and a filler material disposed within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575K. A method to make an electrical contact is provided. The method includes the steps of: providing a substrate; providing a plurality of pores on the substrate; and disposing a filler material within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575K.
    Type: Application
    Filed: July 5, 2006
    Publication date: December 7, 2006
    Inventors: Duraiswamy Srinivasan, Reed Corderman, Christopher Keimel, Somasundaram Gunasekaran, Sudhakar Reddy, Arun Gowda, Kanakasabapathi Subramanian
  • Publication number: 20060266402
    Abstract: A device includes a first thermally conductive substrate having a first patterned electrode disposed thereon and a second thermally conductive substrate having a second patterned electrode disposed thereon, wherein the first and second thermally conductive substrates are arranged such that the first and second patterned electrodes are adjacent to one another. The device includes a plurality of nanowires disposed between the first and second patterned electrodes, wherein the plurality of nanowires is formed of a thermoelectric material. The device also includes a joining material disposed between the plurality of nanowires and at least one of the first and second patterned electrodes.
    Type: Application
    Filed: May 26, 2005
    Publication date: November 30, 2006
    Inventors: An-Ping Zhang, Fazila Seker, Reed Corderman, Shixue Wen, Fred Sharifi, Melissa Sander, Craig Young
  • Publication number: 20060270229
    Abstract: In some embodiments, the present invention is directed to nanoporous anodized aluminum oxide templates of high uniformity and methods for making same, wherein such templates lack a AAO barrier layer. In some or other embodiments, the present invention is directed to methods of electrodepositing nanorods in the nanopores of these templates. In still other embodiments, the present invention is directed to electrodepositing catalyst material in the nanopores of these templates and growing nanorods or other 1-dimensional nanostructures via chemical vapor deposition (CVD) or other techniques.
    Type: Application
    Filed: May 27, 2005
    Publication date: November 30, 2006
    Inventors: Reed Corderman, Heather Hudspeth, Renee Rohling, Lauraine Denault, Scott Miller
  • Publication number: 20060192444
    Abstract: A water-cooled stator bar clip for electrical generators and a method for applying a corrosion-resistant protective coating, preferably Sc, Ti, Cr, Zr, Nb, Mo, Hf, Ta, W, Ni, and Al, and their alloys or oxides to existing stator bar end fittings in order to significantly reduce the possibility of leaks through the brazed connections of the copper stator bar end connections. The coatings can be applied locally using various known physical vapor deposition (“PVD”), chemical vapor deposition (“CVD”) or other direct coating techniques known in the art. For example, the coatings can be applied using ion plasma deposition, sputtering or wire arc techniques (all PVD processes) or by using electroplating, high velocity oxygen free (“HVOF”) deposition, DC arc or electroless plating. Preferably, the coatings are applied either to new stator bar clips or to existing clips in the field.
    Type: Application
    Filed: May 2, 2006
    Publication date: August 31, 2006
    Applicant: General Electric Company
    Inventors: Young Kim, Paul Martiniano, Reed Corderman, Scott Weaver, Alan Iversen, James Maughan
  • Publication number: 20060061220
    Abstract: A water-cooled stator bar clip for electrical generators and a method for applying a corrosion-resistant protective coating, preferably Sc, Ti, Cr, Zr, Nb, Mo, Hf, Ta, W, Ni, and Al, and their alloys or oxides to existing stator bar end fittings in order to significantly reduce the possibility of leaks through the brazed connections of the copper stator bar end connections. The coatings can be applied locally using various known physical vapor deposition (“PVD”), chemical vapor deposition (“CVD”) or other direct coating techniques known in the art. For example, the coatings can be applied using ion plasma deposition, sputtering or wire arc techniques (all PVD processes) or by using electroplating, high velocity oxygen free (“HVOF”) deposition, DC arc or electroless plating. Preferably, the coatings are applied either to new stator bar clips or to existing clips in the field.
    Type: Application
    Filed: November 16, 2005
    Publication date: March 23, 2006
    Applicant: General Electric Company
    Inventors: Young Kim, Paul Martiniano, Reed Corderman, Scott Weaver, Alan Iversen, James Maughan
  • Publication number: 20050133121
    Abstract: A nanocomposite comprising a plurality of nanoparticles dispersed in a metallic alloy matrix, and a structural component formed from such a nanocomposite. The metallic matrix comprises at least one of a nickel-based alloy and an iron-based alloy. The nanocomposite contains a higher volume fraction of nanoparticle dispersoids than those presently available. The structural component include those used in hot gas path assemblies, such as steam turbines, gas turbines, and aircraft turbine. A method of making such nanocomposites is also disclosed.
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Inventors: Pazhayannur Subramanian, Thomas Angeliu, Reed Corderman, Shyh-Chin Huang, Judson Marte, Dennis Gray, Krishnamurthy Anand, Dheepa Srinivasan, Ramkumar Oruganti, Sundar Amancherla
  • Publication number: 20050112048
    Abstract: In a method of making an elongated carbide nanostructure, a plurality of spatially-separated catalyst particles is applied to a substrate. The spatially-separated catalyst particles and at least a portion of the substrate are exposed to a metal-containing vapor at a preselected temperature and for a period sufficient to cause an inorganic nano-structure to form between the substrate and at least one of the catalyst particles. The inorganic nano-structure is exposed to a carbon-containing vapor source at a preselected temperature and for a period sufficient to carburize the inorganic nano-structure.
    Type: Application
    Filed: November 25, 2003
    Publication date: May 26, 2005
    Inventors: Loucas Tsakalakos, Ji-Ung Lee, William Huber, Reed Corderman, Vanita Mani
  • Publication number: 20050079370
    Abstract: Nano-multilayered structures, components and associated methods of manufacture suitable for use in high-temperature applications including a plurality of metallic alloy layers, wherein the thickness of each of the plurality of metallic alloy layers is on a nano scale, and a plurality of ceramic oxide layers disposed between the plurality of metallic alloy layers in an alternating manner, wherein the thickness of each of the plurality of ceramic oxide layers is on a nano scale.
    Type: Application
    Filed: October 10, 2003
    Publication date: April 14, 2005
    Inventors: Reed Corderman, Pazhayannur Subramanian, Dheepa Srinivasan, Dennis Gray, Krishnamurthy Anand
  • Publication number: 20050067935
    Abstract: A self-aligned gated field emission device and an associated method of fabrication are described. The device includes a substrate and a porous layer disposed adjacent to the surface of the substrate, wherein the porous layer defines a plurality of substantially cylindrical channels, each of the plurality of substantially cylindrical channels aligned substantially parallel to one another and substantially perpendicular to the surface of the substrate. The device also includes a plurality of substantially rod-shaped structures disposed within at least a portion of the plurality of substantially cylindrical channels defined by the porous layer and adjacent to the surface of the substrate, wherein a portion of each of the plurality of substantially rod-shaped structures protrudes above the surface of the porous layer.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 31, 2005
    Inventors: Ji Lee, Reed Corderman, William Huber
  • Publication number: 20050012408
    Abstract: A water-cooled stator bar clip for electrical generators and a method for applying a corrosion-resistant protective coating, preferably Sc, Ti, Cr, Zr, Nb, Mo, Hf, Ta, W, Ni, and Al, and their alloys or oxides to existing stator bar end fittings in order to significantly reduce the possibility of leaks through the brazed connections of the copper stator bar end connections. The coatings can be applied locally using various known physical vapor deposition (“PVD”), chemical vapor deposition (“CVD”) or other direct coating techniques known in the art. For example, the coatings can be applied using ion plasma deposition, sputtering or wire arc techniques (all PVD processes) or by using electroplating, high velocity oxygen free (“HVOF”) deposition, DC arc or electroless plating. Preferably, the coatings are applied either to new stator bar clips or to existing clips in the field using a known pencil coater technique.
    Type: Application
    Filed: July 18, 2003
    Publication date: January 20, 2005
    Inventors: Young Kim, Paul Martiniano, Reed Corderman, Scott Weaver, Alan Iverson, James Maughan